Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T16:01:37.845Z Has data issue: false hasContentIssue false

Cosmology and the Hubble Constant: On the Megamaser Cosmology Project (MCP)

Published online by Cambridge University Press:  24 July 2012

C. Henkel
Affiliation:
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, GermanyAstron. Dept., King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia email: [email protected]
J. A. Braatz
Affiliation:
National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA email: [email protected]
M. J. Reid
Affiliation:
Harvard-Smithonsian Center for Astrophysics, 60 Garden Street, Cambridge, MA02138, USA email: [email protected]
J. J. Condon
Affiliation:
National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA email: [email protected]
K. Y. Lo
Affiliation:
National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA email: [email protected]
C. M. Violette Impellizzeri
Affiliation:
National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USAJoint ALMA Observatory, Alonso de Córdova 3107, Vitacura, Santiago, Chile email: [email protected]
C. Y. Kuo
Affiliation:
Dept. of Astronomy, University of Virginia, Charlottesville, VA 22904, USAAASIA, Astron.-Math. Building, Roosevelt Rd, Taipei 10617, Taiwan email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Hubble constant H0 describes not only the expansion of local space at redshift z ~ 0, but is also a fundamental parameter determining the evolution of the universe. Recent measurements of H0 anchored on Cepheid observations have reached a precision of several percent. However, this problem is so important that confirmation from several methods is needed to better constrain H0 and, with it, dark energy and the curvature of space. A particularly direct method involves the determination of distances to local galaxies far enough to be part of the Hubble flow through water vapor (H2O) masers orbiting nuclear supermassive black holes. The goal of this article is to describe the relevance of H0 with respect to fundamental cosmological questions and to summarize recent progress of the ‘Megamaser Cosmology Project’ (MCP) related to the Hubble constant.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Argon, A. L., Greenhill, L. J., Reid, M. J., et al. 2007, ApJ, 659, 1040CrossRefGoogle Scholar
Bonamente, M., Joy, M. K., LaRoque, S. J., et al. 2006, ApJ, 647, 25CrossRefGoogle Scholar
Braatz, J. A., Wilson, A. S., & Henkel, C. 1996, ApJS, 110, 321Google Scholar
Braatz, J. A., Reid, M. J., Humphreys, E. M. L. et al. 2010, ApJ, 718, 657CrossRefGoogle Scholar
Cardone, V. F., Capozziello, S., Re, V., & Piedipalumbo, E. 2002, A&A, 382, 792Google Scholar
Einstein, A. 1917, Sitzungsber. Königl. Preuß. Akad. der Wiss., 6, 142Google Scholar
Freedman, W. L. & Madore, B. F. 2010, ARA&A, 48, 673Google Scholar
Freedman, W. L., Madore, B. F., Gibson, B. K., et al. 2001, ApJ, 553, 47CrossRefGoogle Scholar
Greenhill, L. J., Tilak, A., & Madejski, G. 2008, ApJ, 686, L13Google Scholar
Greene, J. E., Peng, C. Y., Kim, M. et al. 2010, ApJ, 721, 26CrossRefGoogle Scholar
Herrnstein, J. R., Moran, J. M., Greenhill, L. J. et al. 1999, Nature, 400, 539Google Scholar
Hu, W. 2005, ASP Conf. Ser. 339, Observing Dark Energy, eds. Wolff, S. C. & Lauer, T. R. (San Francisco, ASP), 215Google Scholar
Komatsu, E., Smith, K. M., Dunkley, J., et al. 2011, ApJS, 192, 1CrossRefGoogle Scholar
Kuo, C. Y. 2011, Ph.D. Thesis, Univ. of Virginia, CharlottesvilleGoogle Scholar
Kuo, C. Y., Braatz, J. A., Condon, J. J. et al. 2011, ApJ, 727, 20CrossRefGoogle Scholar
Lemaître, G. 1927, Annales de la Société Scientifique de Bruxelles, 47, 49Google Scholar
Madejski, G., Done, C., & Zycki, P. T. 2006, ApJ, 636, 75CrossRefGoogle Scholar
Miyoshi, M., Moran, J., Herrnstein, J. et al. 1995, Nature, 373, 127CrossRefGoogle Scholar
Perlmutter, S., Aldering, G., Goldhaber, G., et al. 1999, ApJ, 517, 565CrossRefGoogle Scholar
Ramolla, M., Haas, M., Bennert, V. N., & Chini, R., 2011 A&A, 530, 147Google Scholar
Ratra, B. & Peebles, P. J. E. 1988 Phys. Rev. D, 37, 3406CrossRefGoogle Scholar
Reid, M. J., Braatz, J. A., Condon, J. J., et al. 2009, ApJ, 695, 287Google Scholar
Riess, A. G., Filippenko, A. V., Challis, P., et al. 1998, AJ, 116, 1009CrossRefGoogle Scholar
Riess, A. G., Macri, L., Casertano, S., et al. 2011, ApJ, 730, 119Google Scholar
Sandage, A., Tammann, G. A., Saha, A., et al. 2006, ApJ, 653, 843Google Scholar
Spergel, D. N., Verde, L., Peiris, H. V., et al. 2003, ApJS, 148. 175Google Scholar
Spergel, D. N., Bean, R., Doré, O., et al. 2007, ApJS, 170. 377Google Scholar
Treu, T. & Koopmans, L. V. E. 2002, MNRAS, 337, L6CrossRefGoogle Scholar
Tsujikawa, S. 2010, Lect. Notes in Phys., 800, 99CrossRefGoogle Scholar
Wetterich, C. 1988 Nucl. Phys. B, 302, 668Google Scholar
Zhang, J. S., Henkel, C., Kadler, M., et al. 2006 A&A, 450, 933Google Scholar
Zhang, J. S., Henkel, C., Gui, Q., et al. 2010 ApJ, 708, 1582CrossRefGoogle Scholar
Zhang, J. S., Henkel, C., Gui, Q., & Wang, J. 2012 A&A, 538, 152Google Scholar
Zhu, G., Zaw, I., Blanton, M. R., & Greenhill, L. J. 2011 ApJ, 742, 73Google Scholar