Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T19:53:09.184Z Has data issue: false hasContentIssue false

The cosmic web in CosmoGrid void regions

Published online by Cambridge University Press:  12 October 2016

Steven Rieder
Affiliation:
Kapteyn Instituut, Rijksuniversiteit Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands, email: [email protected] Sterrewacht Leiden, Leiden University, P.O. Box 9513, 2300 RA Leiden, The Netherlands
Rien van de Weygaert
Affiliation:
Kapteyn Instituut, Rijksuniversiteit Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands, email: [email protected]
Marius Cautun
Affiliation:
Kapteyn Instituut, Rijksuniversiteit Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands, email: [email protected] Department of Physics, Institute for Computational Cosmology, University of Durham, South Road, Durham DH1 3LE, UK
Burcu Beygu
Affiliation:
Kapteyn Instituut, Rijksuniversiteit Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands, email: [email protected]
Simon Portegies Zwart
Affiliation:
Sterrewacht Leiden, Leiden University, P.O. Box 9513, 2300 RA Leiden, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the formation and evolution of the cosmic web, using the high-resolution CosmoGrid ΛCDM simulation. In particular, we investigate the evolution of the large-scale structure around void halo groups, and compare this to observations of the VGS-31 galaxy group, which consists of three interacting galaxies inside a large void.

The structure around such haloes shows a great deal of tenuous structure, with most of such systems being embedded in intra-void filaments and walls. We use the Nexus+} algorithm to detect walls and filaments in CosmoGrid, and find them to be present and detectable at every scale. The void regions embed tenuous walls, which in turn embed tenuous filaments. We hypothesize that the void galaxy group of VGS-31 formed in such an environment.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Aragon-Calvo, M. A. & Szalay, A. S.. The hierarchical structure and dynamics of voids. MNRAS, 428: 3409–3424, February 2013.Google Scholar
Aragón-Calvo, M. A., Jones, B. J. T., van de Weygaert, R., & van der Hulst, J. M.. The multiscale morphology filter: identifying and extracting spatial patterns in the galaxy distribution. A&A, 474: 315–338, October 2007.Google Scholar
Aragon-Calvo, M. A., van de Weygaert, R., Araya-Melo, P. A., Platen, E., & Szalay, A. S.. Unfolding the hierarchy of voids. MNRAS, 404: L89–L93, May 2010.Google Scholar
Beygu, B., Kreckel, K., van de Weygaert, R., van der Hulst, J. M., & van Gorkom, J. H.. An Interacting Galaxy System along a Filament in a Void. AJ, 145: 120, May 2013.Google Scholar
Bond, J. R., Kofman, L., & Pogosyan, D.. How filaments of galaxies are woven into the cosmic web. Nature, 380: 603–606, April 1996.Google Scholar
Cautun, M., van de Weygaert, R., & Jones, B. J. T.. NEXUS: tracing the cosmic web connection. MNRAS, 429: 1286–1308, February 2013.Google Scholar
Cautun, M., van de Weygaert, R., Jones, B. J. T., & Frenk, C. S.. Evolution of the cosmic web. MNRAS, 441: 2923–2973, July 2014.Google Scholar
Cautun, M. C. & van de Weygaert, R.. The DTFE public software - The Delaunay Tessellation Field Estimator code. arXiv:1105.0370, May 2011.Google Scholar
Groen, D., Portegies Zwart, S., Ishiyama, T., & Makino, J.. High-performance gravitational N-body simulations on a planet-wide-distributed supercomputer. Computational Science and Discovery, 4 (1): 015001–+, January 2011.Google Scholar
Ishiyama, T., Fukushige, T., & Makino, J.. GreeM: Massively Parallel TreePM Code for Large Cosmological N -body Simulations. PASJ, 61: 1319–, December 2009.CrossRefGoogle Scholar
Ishiyama, T., Rieder, S., Makino, J., Portegies Zwart, S., Groen, D., Nitadori, K., de Laat, C., McMillan, S., Hiraki, K., & Harfst, S.. The Cosmogrid Simulation: Statistical Properties of Small Dark Matter Halos. ApJ, 767: 146, April 2013.Google Scholar
Kreckel, K., Platen, E., Aragón-Calvo, M. A., van Gorkom, J. H., van de Weygaert, R., van der Hulst, J. M., Kovač, K., Yip, C.-W., & Peebles, P. J. E.. Only the Lonely: H I Imaging of Void Galaxies. AJ, 141: 4, January 2011.Google Scholar
Kreckel, K., Platen, E., Aragón-Calvo, M. A., van Gorkom, J. H., van de Weygaert, R., van der Hulst, J. M., & Beygu, B.. The Void Galaxy Survey: Optical Properties and H I Morphology and Kinematics. AJ, 144: 16, July 2012.CrossRefGoogle Scholar
Pelupessy, F. I., van Elteren, A., de Vries, N., McMillan, S. L. W., Drost, N., & Portegies Zwart, S. F.. The Astrophysical Multipurpose Software Environment. A&A, 557: A84, September 2013.Google Scholar
Portegies Zwart, S., Ishiyama, T., Groen, D., Nitadori, K., Makino, J., de Laat, C., McMillan, S., Hiraki, K., Harfst, S., & Grosso, P.. Simulating the universe on an intercontinental grid of supercomputers. IEEE Computer, v.43, No.8, p.63-70, 43: 63–70, October 2010.Google Scholar
Portegies Zwart, S., McMillan, S. L. W., van Elteren, E., Pelupessy, I., & de Vries, N.. Multi-physics simulations using a hierarchical interchangeable software interface. Computer Physics Communications, 183: 456–468, March 2013.Google Scholar
Rieder, S., van de Weygaert, R., Cautun, M., Beygu, B., & Portegies Zwart, S.. Assembly of filamentary void galaxy configurations. MNRAS, 435: 222–241, October 2013.Google Scholar
Schaap, W. E. & van de Weygaert, R.. Continuous fields and discrete samples: reconstruction through Delaunay tessellations. A&A, 363: L29–L32, November 2000.Google Scholar
Sheth, R. K. & van de Weygaert, R.. A hierarchy of voids: much ado about nothing. MNRAS, 350: 517–538, May 2004.Google Scholar
van de Weygaert, R. & Platen, E.. Cosmic Voids: Structure, Dynamics and Galaxies. International Journal of Modern Physics Conference Series, 1: 4166, 2011.CrossRefGoogle Scholar
van de Weygaert, R. & Schaap, W.. The Cosmic Web: Geometric Analysis. In Martínez, V. J., Saar, E., Martínez-González, E., and Pons-Bordería, M.-J., editors, Data Analysis in Cosmology, volume 665 of Lecture Notes in Physics, Berlin Springer Verlag, pages 291413, 2009.Google Scholar
van de Weygaert, R. & van Kampen, E.. Voids in Gravitational Instability Scenarios - Part One - Global Density and Velocity Fields in an Einstein - De-Sitter Universe. MNRAS, 263: 481, July 1993.Google Scholar
Zeldovich, I. B., Einasto, J., & Shandarin, S. F.. Giant voids in the universe. Nature, 300: 407–413, December 1982.Google Scholar