Published online by Cambridge University Press: 26 August 2011
Quasi-Separatrix Layers (QSLs) are 3D geometrical objects that define narrow volumes across which magnetic field lines have strong, but finite, gradients of connectivity from one footpoint to another. QSLs extend the concept of separatrices, that are topological objects across which the connectivity is discontinuous. Based on analytical arguments, and on magnetic field extrapolations of the Sun's coronal force-free field above observed active regions, it has long since been conjectured that QSLs are favorable locations for current sheet (CS) formation, as well as for magnetic reconnection, and therefore are good predictors for the locations of magnetic energy release in flares and coronal heating. It is only up to recently that numerical MHD simulations and solar observations, as well as a laboratory experiment, have started to address the validity of these conjectures. When put all together, they suggest that QSL reconnection is involved in the displacement of EUV and SXR brightenings along chromospheric flare ribbons, that it is related with the heating of EUV coronal loops, and that the dissipation of QSL related CS may be the cause of coronal heating in initially homogeneous, braided and turbulent flux tubes, as well as in coronal arcades rooted in the slowly moving and numerous small-scale photospheric flux concentrations, both in active region faculae and in the quiet Sun. The apparent ubiquity of QSL-related CS in the Sun's corona, which will need to be quantified with new generation solar instruments, also suggests that QSLs play an important role in stellar's atmospheres, when their surface radial magnetic fields display complex patterns.