Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T16:47:43.741Z Has data issue: false hasContentIssue false

Core Collapse Supernova Models and Nucleosynthesis

Published online by Cambridge University Press:  29 January 2014

Ken'ichi Nomoto*
Affiliation:
Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Chiba 277-8583, Japan email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

After the Big Bang, production of heavy elements in the early Universe takes place in the first stars and their supernova explosions. The nature of the first supernovae, however, has not been well understood. The signature of nucleosynthesis yields of the first supernovae can be seen in the elemental abundance patterns observed in extremely metal-poor stars. Interestingly, those abundance patterns show some peculiarities relative to the solar abundance pattern, which should provide important clues to understanding the nature of early generations of supernovae. We review the recent results of the nucleosynthesis yields of massive stars. We examine how those yields are affected by some hydrodynamical effects during the supernova explosions, namely, explosion energies from those of hypernovae to faint supernovae, mixing and fallback of processed materials, asphericity, etc. Those parameters in the supernova nucleosynthesis models are constrained from observational data of supernovae and metal-poor stars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Aoki, W., Norris, J. E., & Ryan, S. G., et al. 2004, ApJ, 608, 971Google Scholar
Arnett, W. D., Bahcall, J. N., Kirshner, R. P., & Woosley, S. E. 1989, ARAA, 27, 629Google Scholar
Barkat, Z., Rakavy, G., & Sack, N. 1967, Phys. Rev. Letters, 18, 379Google Scholar
Beers, T. C. & Christlieb, N. 2005, ARAA, 43, 531Google Scholar
Bufano, F., et al. 2012, ApJ, 753, 67CrossRefGoogle Scholar
Caffau, E., et al. 2011, Nature, 477, 67CrossRefGoogle Scholar
Cayrel, R., et al. 2004, A&A, 416, 1117Google Scholar
Christlieb, N., et al. 2002, Nature, 419, 904Google Scholar
Collet, R., Asplund, M., & Trampedach, R. 2006, ApJ, 644, L121Google Scholar
Frebel, A.et al. 2005, Nature, 434, 871Google Scholar
Heger, A. & Woosley, S. E. 2002, ApJ, 567, 532Google Scholar
Iwamoto, N., Umeda, H., Tominaga, N., Nomoto, K., & Maeda, K., 2005, Science, 309, 451CrossRefGoogle Scholar
Kawabata, K., Maeda, K., Nomoto, K., et al. 2010, Nature, 465, 326Google Scholar
Kitaura, F. S., Janka, H.-Th., & Hillebrandt, W. 2006, A&A, 450, 345Google Scholar
Melandri, A., et al. 2012, A&A, 547, 82Google Scholar
Moriya, T., Tominaga, N., Tanaka, M., Maeda, K., & Nomoto, K. 2010, ApJ, 717, 83Google Scholar
Müller, B., Janka, T., & Heger, A. 2012, ApJ, 761, 72Google Scholar
Nakamura, T., Umeda, H., Iwamoto, K., Nomoto, K., et al. 2001, ApJ, 555, 880CrossRefGoogle Scholar
Nomoto, K. 1987, ApJ, 322, 206CrossRefGoogle Scholar
Nomoto, K. & Hashimoto, M. 1988, Phys. Rep., 163, 13CrossRefGoogle Scholar
Nomoto, K., Mazzali, P. A., Nakamura, T., et al. 2001, in Supernovae and Gamma Ray Bursts, eds. Livio, M.et al. (Cambridge Univ. Press) 144 (astro-ph/0003077)Google Scholar
Nomoto, K.et al. 2003, in IAU Symp. 212, A Massive Star Odyssey, from Main Sequence to Supernova, eds. Hucht, V. D.et al. (San Francisco: ASP) 395 (astro-ph/0209064)Google Scholar
Nomoto, K., Tominaga, N., Umeda, H., Kobayashi, C., & Maeda, K. 2006, Nuclear Phys., A777, 424Google Scholar
Nomoto, K. 2012, in IAU Symp. 279, Death of Massive Stars: Supernovae and Gamma-Ray Bursts, ed. Kawai, N.et al. (Cambridge: Cambridge Univ. Press) 1Google Scholar
Nomoto, K., Kobayashi, C., & Tominaga, N. 2013, ARAA, in pressGoogle Scholar
Ohkubo, T., Umeda, H., Maeda, K., Nomoto, K., Suzuki, T., Tsuruta, S., & Rees, M. J. 2006, ApJ, 645, 1352Google Scholar
Ohkubo, T., Nomoto, K., Umeda, H., Yoshida, N., & Tsuruta, S., 2009, ApJ, 706, 1184Google Scholar
Smartt, S. J. 2009, ARAA, 47, 63CrossRefGoogle Scholar
Tominaga, N., Maeda, K., Umeda, H., Nomoto, K., Tanaka, M., Iwamoto, N., Suzuki, T., & Mazzali, P. A. 2007a, ApJ, 657, L77CrossRefGoogle Scholar
Tominaga, N., Umeda, H., & Nomoto, K. 2007b, ApJ, 660, 516Google Scholar
Tominaga, N., Blinnikov, S., & Nomoto, K. 2013, ApJ, in pressGoogle Scholar
Tominaga, N., Iwamoto, N., & Nomoto, K. 2013, ApJ, submittedGoogle Scholar
Turatto, M., Mazzali, P. A., Young, T., Nomoto, K., et al. 1998, ApJ, 498, L129Google Scholar
Umeda, H. & Nomoto, K. 2002, ApJ, 565, 385Google Scholar
Umeda, H., Nomoto, K., Tsuru, T., & Matsumoto, H. 2002, ApJ, 578, 855Google Scholar
Umeda, H. & Nomoto, K. 2003, Nature, 422, 871Google Scholar
Umeda, H. & Nomoto, K. 2008, ApJ, 673, 1014Google Scholar
Wanajo, S., Nomoto, K., Janka, H.-T., Kitaura, F. S., & Müller, B. 2009, ApJ, 695, 208Google Scholar
Wanajo, S., Janka, H.-T., & Müller, B. 2013, ApJ (Letters), 767, L26Google Scholar
Woosley, S. E. & Bloom, J. S. 2006, ARAA, 44, 507Google Scholar
Woosley, S. E., Blinnikov, S., & Heger, A. 2007, Nature, 450, 390Google Scholar