Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T20:03:40.475Z Has data issue: false hasContentIssue false

Constraints on the optical-IR extragalactic background from γ-ray absorption studies

Published online by Cambridge University Press:  17 August 2012

Luigi Costamante*
Affiliation:
Stanford University, Stanford, USA INAF, Brera Observatory, Milano, Italy email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Very high energy (VHE ≳0.1 TeV) gamma-rays from extragalactic sources, interacting by γ-γ collisions with diffuse intergalactic radiation fields, provide an alternative way to constrain the diffuse background light, completely independent of direct measurements. The limits depend however on our knowledge of the physics of the gamma-ray sources. After clarifying the interplay between background light and VHE spectra, I summarize the extent and validity of the obtainable limits, and where future improvements can be expected.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Abdo, A. A., et al. (Fermi Coll.) 2010, ApJ, 715, 429CrossRefGoogle Scholar
Abdo, A. A., et al. (Fermi Coll.) 2010b, ApJ, 723, 1082CrossRefGoogle Scholar
Acciari, V. A., et al. (VERITAS Coll.) 2009, ApJ, 695, 1370Google Scholar
Aharonian, F. A., et al. (HEGRA Coll.), 1999, A&A, 350, 757Google Scholar
Aharonian, F. 2001, Proceedings 27th ICRC (Hamburg), Invited, Rapporteur, and Highlight Papers, 250Google Scholar
Aharonian, F. A., et al. (HEGRA Coll.), 2001, A&A, 366, 62Google Scholar
Aharonian, F. A., et al. (HEGRA Coll.), 2003, A&A, 403, 523Google Scholar
Aharonian, F. A., et al. (H. E. S. S. Coll.) 2006, Nature, 440, 1018Google Scholar
Aharonian, F. A., et al. (H. E. S. S. Coll.) 2007, A&A, 473, 25Google Scholar
Aharonian, F. A., et al. (H. E. S. S. Coll.) 2007b, A&A, 475, L9.Google Scholar
Aharonian, F. A., Khangulyan, D., & Costamante, L. 2008, MNRAS, 387, 1206Google Scholar
Albert, J., et al. (MAGIC Coll.) 2008, Science, 320, 1752CrossRefGoogle Scholar
Costamante, L., et al. 2004, NewAR, 48, 469CrossRefGoogle Scholar
Costamante, L., 2007, Ap&SS, 309, 487Google Scholar
Dominguez, A. et al. 2011, MNRAS, 410, 2556CrossRefGoogle Scholar
Dwek, E. & Krennrich, F., 2005, ApJ, 618, 657CrossRefGoogle Scholar
Franceschini, A., et al. 2008, A&A, 487, 837Google Scholar
Gilmore, R. C., et al. 2011, MNRAS, submitted (arXiv:1104.0671)Google Scholar
Hauser, M. G. & Dwek, E. 2001, ARAA, 39, 249CrossRefGoogle Scholar
Hinton, J. A. & Hofmann, W., 2009, ARAA, 47, 523CrossRefGoogle Scholar
Katarzynski, K., et al. 2006, MNRAS, 368, L52.CrossRefGoogle Scholar
Kneiske, T. M. & Dole, H. 2010, A&A, 515, A19.Google Scholar
Lefa, E., Rieger, F. M., & Aharonian, F., 2011, ApJ, 740, 64CrossRefGoogle Scholar
Madau, P. & Silk, J. 2005, MNRAS, 359, L37.CrossRefGoogle Scholar
Mazin, D. & Raue, M. 2007, A&A 471, 439Google Scholar
Reimer, A., 2007, ApJ, 665, 1023Google Scholar
Santos, M. R. et al. , 2002, MNRAS, 336, 1082CrossRefGoogle Scholar
Saugé, L. & Henri, G. 2004, ApJ 616, 136CrossRefGoogle Scholar
Stecker, F. W., Baring, M. G., & Summerlin, E. J. 2007, ApJ, 667, L29.Google Scholar
Tavecchio, F., et al. 2009, MNRAS, 399L, 59.Google Scholar