Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-07T21:51:02.586Z Has data issue: false hasContentIssue false

Constraining the luminosity function parameters and population size of radio pulsars in globular clusters

Published online by Cambridge University Press:  20 March 2013

Jayanth Chennamangalam
Affiliation:
Department of Physics, West Virginia University, PO Box 6315, Morgantown, WV 26506, USA email: [email protected]
D. R. Lorimer
Affiliation:
Department of Physics, West Virginia University, PO Box 6315, Morgantown, WV 26506, USA email: [email protected] NRAO, Green Bank Observatory, PO Box 2, Green Bank, WV 24944, USA
Ilya Mandel
Affiliation:
School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
Manjari Bagchi
Affiliation:
Department of Physics, West Virginia University, PO Box 6315, Morgantown, WV 26506, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The luminosity distribution of Galactic radio pulsars is believed to be log-normal in form. Applying this functional form to populations of pulsars in globular clusters, we employ Bayesian methods to explore constraints on the mean and standard deviation of the function, as well as the total number of pulsars in the cluster. Our analysis is based on an observed number of pulsars down to some limiting flux density, measurements of flux densities of individual pulsars, as well as diffuse emission from the direction of the cluster. We apply our analysis to Terzan 5 and demonstrate, under reasonable assumptions, that the number of potentially observable pulsars is in a 95.45% credible interval of 133+101−58. Beaming considerations would increase the true population size by approximately a factor of two.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Alpar, M. A., Cheng, A. F., Ruderman, M. A., & Shaham, J. 1982, Nature, 300, 728Google Scholar
Bagchi, M., Lorimer, D. R., & Chennamangalam, J. 2011, MNRAS, 418, 477Google Scholar
Boyles, J., Lorimer, D. R., Turk, P. J., Mnatsakanov, R., Lynch, R. S., Ransom, S. M., Freire, P. C., & Belczynski, K. 2011, ApJ, 742, 51Google Scholar
Faucher-Giguère, C.-A. & Kaspi, V. M. 2006, ApJ, 643, 332Google Scholar
Fruchter, A. S. & Goss, W. M. 2000, ApJ, 536, 865Google Scholar
Hessels, J. W. T., Ransom, S. M., Stairs, I. H., Freire, P. C. C., Kaspi, V. M., & Camilo, F. 2006, Science, 311, 1901Google Scholar
Kramer, M., Xilouris, K. M., Lorimer, D. R., Doroshenko, O., Jessner, A., Wielebinski, R., Wolszczan, A., & Camilo, F. 1998, ApJ, 501, 270CrossRefGoogle Scholar
Lorimer, D. R. & Kramer, M. 2005, Handbook of Pulsar Astronomy, Cambridge Univ. Press, Cambridge, UKGoogle Scholar
Ortolani, S., Barbuy, B., Bica, E., Zoccali, M., & Renzini, A. 2007, A&A, 470, 1043Google Scholar
Ransom, S. M., Hessels, J. W. T., Stairs, I. H., Freire, P. C. C., Camilo, F., Kaspi, V. M., & Kaplan, D. L. 2005, Science, 307, 892CrossRefGoogle Scholar
Ridley, J. P. & Lorimer, D. R. 2010, MNRAS, 404, 1081Google Scholar