Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T18:49:43.276Z Has data issue: false hasContentIssue false

Constraining the driving mechanism of galaxy-scale winds with emission line spectra

Published online by Cambridge University Press:  28 October 2024

Jonathan Stern*
Affiliation:
School of Physics & Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
Jose Oñorbe
Affiliation:
Facultad de Físicas, Universidad de Sevilla, E-41012 Seville, Spain
Alexander J. Richings
Affiliation:
Data Science AI and Modelling Centre, University of Hull, Hull HU6 7RX, UK
Sean D. Johnson
Affiliation:
Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA
Claude-André Faucher-Giguère
Affiliation:
Department of Physics and Astronomy and CIERA, Northwestern University, Evanston, IL 60208, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using hydrodynamic simulations and photoionization calculations, we demonstrate that quasar emission line spectra contain information on the driving mechanism of galaxy-scale outflows. Outflows driven by a hot shocked bubble are expected to exhibit LINER-like optical line ratios, while outflows driven by radiation pressure are expected to exhibit Seyfert-like line ratios. Driving by radiation pressure also has a distinct signature in the narrow UV lines, which is detected in an HST-COS spectrum of a nearby quasar hosting a large-scale wind.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Baskin, A., Laor, A. & Stern, J., 2014, MNRAS, 438, 604 CrossRefGoogle Scholar
Dopita, M. A., Groves, B. A., Sutherland, R. S., Binette, L. & Cecil, G., 2002, ApJ, 572, 753 CrossRefGoogle Scholar
Draine, B. T., 2011, ApJ, 732, 100 CrossRefGoogle Scholar
Faucher-Giguère, C.-A. & Quataert, E., 2012, MNRAS, 425, 605 CrossRefGoogle Scholar
Fiore, F., et al., 2017, A&A, 601, A143 Google Scholar
Krumholz, M. R., Thompson, T. A., Ostriker, E. C. & Martin, C. L., 2017, MNRAS, 471, 4061 CrossRefGoogle Scholar
Murray, N., Quataert, E. & Thompson, T. A., 2005, ApJ, 618, 569 CrossRefGoogle Scholar
Richings, A. J. & Faucher-Giguère, C.-A., 2018a, MNRAS, 478, 3100 CrossRefGoogle Scholar
Richings, A. J. & Faucher-Giguère, C.-A., 2018b, MNRAS, 474, 3673 CrossRefGoogle Scholar
Richings, A. J., Faucher-Giguère, C.-A. & Stern, J., 2021, MNRAS, 503, 1568 CrossRefGoogle Scholar
Somalwar, J., Johnson, S. D., Stern, J., et al. 2020, ApJL, 890, L28 CrossRefGoogle Scholar
Stern, J., Laor, A. & Baskin, A., 2014, MNRAS, 438, 901 CrossRefGoogle Scholar
Stern, J., Faucher-Giguère, C.-A., Zakamska, N. L. & Hennawi, J. F., 2016, ApJ, 819, 130 CrossRefGoogle Scholar
Veilleux, S., Maiolino, R., Bolatto, A. D. & Aalto, S., 2020, A&AR, 28, 2 Google Scholar
Yusef-Zadeh, F. & Wardle, M., 2019, MNRAS, 490, L1 CrossRefGoogle Scholar
Zubovas, K. & King, A., 2012, ApJL, 745, L34 CrossRefGoogle Scholar