Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-24T17:41:22.667Z Has data issue: false hasContentIssue false

Constraining the behaviour of the young massive stars through interferometry

Published online by Cambridge University Press:  29 August 2024

Emma Bordier*
Affiliation:
European Southern Observatory (ESO), Alonso de Cordova 3107, Vitacura, Santiago, Chile Institute of Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
Abigail J. Frost
Affiliation:
Institute of Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
Hugues Sana
Affiliation:
Institute of Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
Antoine Mérand
Affiliation:
European Southern Observatory (ESO), Karl-Schwarzschild-Str. 2, Garching, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The formation of multiples has seen some significant progress over the past years mainly due to the advent and the expansion of high-angular resolution facilities. Star-forming regions are the laboratories where massive stars can be caught right after their formation phase. Still, the observational constraints and the properties of young multiple systems are poorly documented. These proceedings contain recent results about the multiplicity properties of six young O-type stars in the M17 star-forming region, observed by the means of near-IR interferometric observations, which have provided insight into the origin of massive close binaries in a cluster environment.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Bordier, E., Frost, A. J., Sana, H., Reggiani, M., Mérand, A., Rainot, A., Ramírez-Tannus, M. C., & de Wit, W. J. 2022, A&A, 663, A26Google Scholar
Duchêne, G., & Kraus, A. 2013, ARA&A, 51, 269Google Scholar
Gravity Collaboration et al. 2018, A&A, 620, A116Google Scholar
Koumpia, E., et al. 2021, A&A, 654, A10910.1051/0004-6361/202141373CrossRefGoogle Scholar
Mérand, A. 2022, PMOIRED: Parametric Modeling of Optical Interferometric Data, Astrophysics Source Code Library, record ascl:2205.001Google Scholar
Meyer, D. M. A., Kuiper, R., Kley, W., Johnston, K. G., & Vorobyov, E. 2018, MNRAS, 473, 361510.1093/mnras/stx2551CrossRefGoogle Scholar
Moe, M., & Di Stefano, R. 2017, ApJS, 230, 1510.3847/1538-4365/aa6fb6CrossRefGoogle Scholar
Offner, S. S. R., Moe, M., Kratter, K. M., Sadavoy, S. I., Jensen, E. L. N., & Tobin, J. J. 2022, arXiv e-prints, arXiv:2203.10066Google Scholar
Oliva, G. A., & Kuiper, R. 2020, A&A, 644, A41Google Scholar
Pomohaci, R., Oudmaijer, R. D., & Goodwin, S. P. 2019, MNRAS, 484, 226Google Scholar
Ramírez-Tannus, M. C., et al. 2021, A&A, 645, L10Google Scholar
Sana, H., Ramírez-Tannus, M. C., de Koter, A., Kaper, L., Tramper, F., & Bik, A. 2017, A&A, 599, L910.1051/0004-6361/201630087CrossRefGoogle Scholar
Sana, H., et al. 2012, Science, 337, 444Google Scholar
Sana, H., et al. 2014, ApJS, 215, 15Google Scholar
Tan, J. C., Beltrán, M. T., Caselli, P., Fontani, F., Fuente, A., Krumholz, M. R., McKee, C. F., & Stolte, A. 2014, in Protostars and Planets VI, ed. H. Beuther, R. S. Klessen, C. P. Dullemond, & T. Henning, 149Google Scholar
Zinnecker, H., & Yorke, H. W. 2007, ARA&A, 45, 481Google Scholar