Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T09:21:21.577Z Has data issue: false hasContentIssue false

Constraining Supermassive Black Hole Binary Dynamics Using Pulsar Timing Data

Published online by Cambridge University Press:  27 October 2016

J. A. Ellis
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The most likely sources of nanohertz gravitational waves (GWs) are supermassive black holes (SMBHs) at the center of merging galaxies. A stochastic superposition of GWs from these sources is expected to produce a stochastic GW background that will leave a unique signature in the correlations of arrival times of pulses from a collection of radio pulsars. Using the 9-year data release from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) collaboration, we perform the first analysis that places constraints on the amplitude and shape of the stochastic GW background. We find that the data favor a turn over in the GW strain spectrum for current models of SMBH merger rates. This result indicates that environmental factors, other than GWs from circular binaries, are influencing the GW spectrum. Furthermore, we map constraints on the spectral shape to constraints on various environmental factors that drive the binary to the GW-driven regime including the stellar mass density for stellar-scattering, mass accretion rate for circumbinary disk interaction, and orbital eccentricity for eccentric binaries.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Aarseth, S. J. 2003, Ap&SS, 285, 367 Google Scholar
Amaro-Seoane, P., Miller, M. C., & Freitag, M. 2009, ApJ, 692, L50 Google Scholar
Armitage, P. J. & Natarajan, P. 2002, ApJ, 567, L9 CrossRefGoogle Scholar
Arzoumanian, Z., et al. The NANOGrav Collaboration 2015, ApJ, in press; arXiv:1508.03024Google Scholar
Berentzen, I., Preto, M., Berczik, P., Merritt, D., & Spurzem, R. 2009, ApJ, 695, 455 CrossRefGoogle Scholar
Colpi, M. 2014, Space Sci. Rev., 183, 189 CrossRefGoogle Scholar
Detweiler, S. 1979, ApJ, 234, 1100 Google Scholar
Di Matteo, T., Carilli, C. L., & Fabian, A. C. 2001, ApJ, 547, 731 Google Scholar
Dotti, M., Colpi, M., Haardt, F., & Mayer, L. 2007, MNRAS, 379, 956 Google Scholar
Dotti, M., Merloni, A., & Montuori, C. 2015, MNRAS, 448, 3603 Google Scholar
Enoki, M. & Nagashima, M. 2007, Prog. Theor. Phys., 117, 241 Google Scholar
Foster, R. S. & Backer, D. C. 1990, ApJ, 361, 300 CrossRefGoogle Scholar
Goicovic, F. G., Cuadra, J., Sesana, A., et al. 2015, MNRAS; submitted; arXiv:1507.05596Google Scholar
Hellings, R. W. & Downs, G. S. 1983, ApJ, 265, L39 Google Scholar
Hemsendorf, M., Sigurdsson, S., & Spurzem, R. 2002, ApJ, 581, 1256 Google Scholar
Huerta, E. A., McWilliams, S. T., Gair, J. R., & Taylor, S. R. 2015, Phys. Rev. D, 92, 063010 Google Scholar
Ivanov, P. B., Papaloizou, J. C. B., & Polnarev, A. G. 1999, MNRAS, 307, 79 Google Scholar
Jaffe, A. H. & Backer, D. C. 2003, ApJ, 583, 616 CrossRefGoogle Scholar
Kocsis, B. & Sesana, A. 2011, MNRAS, 411, 1467 Google Scholar
Kormendy, J. & Ho, L. C. 2013, ARA&A, 51, 511 Google Scholar
Lentati, L., et al. 2015, MNRAS, 453, 2576 Google Scholar
McConnell, N. J. & Ma, C.-P. 2013, ApJ, 764, 184 Google Scholar
McConnell, N. J., Ma, C.-P., Gebhardt, K., et al. 2011, Nature, 480, 215 Google Scholar
McWilliams, S. T., Ostriker, J. P., & Pretorius, F. 2014, ApJ, 789, 156 (MOP14)Google Scholar
Phinney, E. S. 2001, astro-ph/0108028Google Scholar
Quinlan, G. D. 1996, New Astron., 1, 35 Google Scholar
Rajagopal, M. & Romani, R. W. 1995, ApJ, 446, 543 CrossRefGoogle Scholar
Ravi, V., Wyithe, J. S. B., Shannon, R. M., Hobbs, G., & Manchester, R. N. 2014, MNRAS, 442, 56 (RWS14)Google Scholar
Sampson, L., Cornish, N. J., & McWilliams, S. T. 2015, Phys. Rev. D, 91, 084055 Google Scholar
Sazhin, M. V. 1978, Soviet Ast., 22, 36 Google Scholar
Sesana, A., Haardt, F., Madau, P., & Volonteri, M. 2004, ApJ, 611, 623 Google Scholar
Sesana, A. 2010, ApJ, 719, 851 Google Scholar
Sesana, A. 2013a, MNRAS, 433, L1 (S13)Google Scholar
Sesana, A. 2013b, Classical Quant. Grav., 30, 224014 Google Scholar
Sesana, A. & Khan, F. M. 2015, MNRAS, 454, L66 CrossRefGoogle Scholar
Sesana, A., Vecchio, A., & Colacino, C. N. 2008, MNRAS, 390, 192 CrossRefGoogle Scholar
Shannon, R. M., et al. 2015, Science, 349, 1522 Google Scholar
Vasiliev, E., Antonini, F., & Merritt, D. 2015, ApJ, 810, 49 Google Scholar
Wyithe, J. S. B. & Loeb, A. 2003, ApJ, 590, 691 Google Scholar