Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T15:44:34.940Z Has data issue: false hasContentIssue false

Constraining general massive-star physics by exploring the unique properties of magnetic O-stars: Rotation, macroturbulence & sub-surface convection

Published online by Cambridge University Press:  23 January 2015

Jon O. Sundqvist*
Affiliation:
Universitätssternwarte, Scheinerstr. 1, D-81679 Müenchen; Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A quite remarkable aspect of non-interacting O-stars with detected surface magnetic fields is that they all are very slow rotators. This paper uses this unique property to first demonstrate that the projected rotational speeds of massive, hot stars, as derived using current standard spectroscopic techniques, can be severely overestimated when significant “macroturbulent” line-broadening is present. This may, for example, have consequences for deriving the statistical distribution of rotation rates in massive-star populations. It is next shown how such macroturbulence (seemingly a universal feature of hot, massive stars) is present in all but one of the magnetic O-stars, namely NGC 1624-2. Assuming then a simple model in which NGC 1624-2's exceptionally strong, large-scale magnetic field suppresses atmospheric motions down to layers where the magnetic and gas pressures are comparable, first empirical constraints on the formation depth of this enigmatic hot-star macroturbulence is derived. The results suggest it originates in the thin sub-surface convection zone of massive stars, consistent with a physical origin due to, e.g., stellar pulsations excited by the convective motions.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Aerts, C., Puls, J., Godart, M., & Dupret, M.-A. 2009, A&A 508, 409Google Scholar
Aerts, C., Simon-Diaz, S., Groot, P. J., & Degroote, P. 2014, ArXiv e-printsGoogle Scholar
Alecian, E., Wade, G. A., Catala, C., et al. 2013, MNRAS 429, 1001CrossRefGoogle Scholar
Asplund, M., Nordlund, Å., Trampedach, R., Allende Prieto, C., & Stein, R. F. 2000, A&A 359, 729Google Scholar
Balmforth, N. J., Cunha, M. S., Dolez, N., Gough, D. O., & Vauclair, S. 2001, MNRAS 323, 362CrossRefGoogle Scholar
Borra, E. F. & Landstreet, J. D. 1980, ApJS 42, 421CrossRefGoogle Scholar
Cantiello, M., Langer, N., Brott, I., et al. 2009, A&A 499, 279Google Scholar
Howarth, I. D., Siebert, K. W., Hussain, G. A. J., & Prinja, R. K. 1997, MNRAS 284, 265CrossRefGoogle Scholar
Howarth, I. D., Walborn, N. R., Lennon, D. J., et al. 2007, MNRAS 381, 433CrossRefGoogle Scholar
Petit, V., Owocki, S. P., Wade, G. A., et al. 2013, MNRAS 429, 398CrossRefGoogle Scholar
Puls, J., Urbaneja, M. A., Venero, R., et al. 2005, A&A 435, 669Google Scholar
Shiode, J. H., Quataert, E., Cantiello, M., & Bildsten, L. 2013, MNRAS 430, 1736CrossRefGoogle Scholar
Simón-Díaz, S. & Herrero, A. 2014, A&A 562, A135Google Scholar
Sundqvist, J. O., Petit, V., Owocki, S. P., et al. 2013a, MNRAS 433, 2497CrossRefGoogle Scholar
Sundqvist, J. O., Simón-Díaz, S., Puls, J., & Markova, N. 2013b, A&A 559, L10Google Scholar
Wade, G. A. & Grunhut, J. H., MiMeS Collaboration 2012, in Carciofi, A. C. & Rivinius, T. (eds.), Circumstellar Dynamics at High Resolution, Vol. 464 of Astronomical Society of the Pacific Conference Series, p. 405Google Scholar