Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T21:46:33.076Z Has data issue: false hasContentIssue false

The connection between stellar and nuclear clusters: Can an IMBH be sitting at the heart of the Milky Way?

Published online by Cambridge University Press:  11 March 2020

Manuel Arca Sedda*
Affiliation:
Astronomisches Rechen-Institut, Zentrum für Astronomie, University of Heidelberg, Mönchhofstrasse 12-14, D-69120, Heidelberg, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A vast number of observed galactic nuclei are known to harbour a central supermassive black hole (SMBH). In their early lifetime, these systems might have witnessed the strong interaction between the SMBH and massive star clusters formed in the inner galactic regions. Due to the strong tidal field exerted from the SMBH, clusters are likely to undergo tidal disruption, releasing their stars all around the SMBH, and possibly driving the formation of a nuclear cluster (NC). This mechanism can contribute to populate galactic nuclei with intermediate-mass black holes (IMBH). Interactions with the central SMBH can lead to the formation of tight massive BH binaries (MBBH) that undergo coalescence via gravitational waves (GW) emission. We discuss this mechanism in the context of the Milky Way centre, exploring the possibility that SgrA*, the Galactic SMBH, has an IMBH companion.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Abbate, F., Mastrobuono-Battisti, A., Colpi, M., et al. 2018, MNRAS, 473:92793610.1093/mnras/stx2364CrossRefGoogle Scholar
Amaro-Seoane, P., Gair, J. R., Freitag, M., et al. 2007, Class. Quan. Grav., 24(17), pp. R113R16910.1088/0264-9381/24/17/R01CrossRefGoogle Scholar
Antonini, F., 2013, ApJ, 763:62CrossRefGoogle Scholar
Antonini, F., Barausse, E., & Silk, J., 2015, ApJ, 812:72CrossRefGoogle Scholar
Antonini, F., Capuzzo-Dolcetta, R., Mastrobuono-Battisti, A., & Merritt, D., 2012, ApJ, 750:111CrossRefGoogle Scholar
Arca-Sedda, M. & Capuzzo-Dolcetta, R., 2014, MNRAS, 444:37383755CrossRefGoogle Scholar
Arca-Sedda, M. & Capuzzo-Dolcetta, R., 2017a, MNRAS, 464:30603070CrossRefGoogle Scholar
Arca-Sedda, M. & Capuzzo-Dolcetta, R., 2017b, MNRAS, 471:47849010.1093/mnras/stx1586CrossRefGoogle Scholar
Arca-Sedda, M. & Capuzzo-Dolcetta, R., 2019, MNRAS, 483:152171, Feb. 2019.CrossRefGoogle Scholar
Arca-Sedda, M., Capuzzo-Dolcetta, R., Antonini, F., Seth, A., et al. 2015, ApJ, 806:220CrossRefGoogle Scholar
Arca-Sedda, M., Capuzzo-Dolcetta, R., & Spera, M., 2016, MNRAS, 456:24572466CrossRefGoogle Scholar
Arca-Sedda, M. & Gualandris, A., 2018, MNRAS, 477:44234442CrossRefGoogle Scholar
Arca-Sedda, M., Kocsis, B., & Brandt, T. D., 2018, MNRAS, 479:900916CrossRefGoogle Scholar
Böker, T., Laine, S., van der Marel, R. P., Sarzi, M., Rix, H.-W., Ho, L. C., & Shields, J. C., 2002, AJ, 123:138910.1086/339025CrossRefGoogle Scholar
Brandt, T. D. & Kocsis, B., 2015, ApJ, 812:15CrossRefGoogle Scholar
Capuzzo-Dolcetta, R., 1993, ApJ, 415:616CrossRefGoogle Scholar
Ebisuzaki, T., Makino, J., Tsuru, T. G., et al. 2001, ApJL, 562:L19L22CrossRefGoogle Scholar
Fermi-LAT Collaboration, 2017, ArXiv e-printsGoogle Scholar
Fragione, G., Antonini, F., & Gnedin, O. Y., 2017, MNRAS, 475:53135321CrossRefGoogle Scholar
Gnedin, O. Y., Ostriker, J. P., & Tremaine, S., 2014, ApJ, 785:71CrossRefGoogle Scholar
Gualandris, A. & Merritt, D. 2009, ApJ, 705, 36137110.1088/0004-637X/705/1/361CrossRefGoogle Scholar
Gualandris, A. & Merritt, D., 2012, ApJ, 744, 74CrossRefGoogle Scholar
Hooper, D. & Goodenough, L., 2011, Physics Letters B, 697:412428CrossRefGoogle Scholar
Koposov, Sergey E. and Boubert, Douglas, Li, Ting S.et al. 2019, arXiv:1907.11725Google Scholar
Mastrobuono-Battisti, A., Perets, H. B., & Loeb, A., 2014, ApJ, 796:40CrossRefGoogle Scholar
McLaughlin, D. E., King, A. R., & Nayakshin, S., 2006, ApJL, 650:L37L40CrossRefGoogle Scholar
Milosavljevi, M., 2004, ApJL, 605:L13L1610.1086/420696CrossRefGoogle Scholar
Neumayer, N. & Walcher, C. J., 2012, Advances in Astronomy, 2012CrossRefGoogle Scholar
Nguyen, D. D., Seth, A. C., Reines, A. E., et al. 2014, ApJ, 794:34CrossRefGoogle Scholar
Oka, T., Tsujimoto, S., Iwata, Y., et al. 2018, Nature Astronomy, 1, 709712CrossRefGoogle Scholar
Perez, K., Hailey, C. J., Bauer, F. E., et al. 2015, Nature, 520:646649CrossRefGoogle Scholar
Portegies Zwart, S. F., Baumgardt, H., McMillan, S. L. W., et al. 2006, ApJ, 641:319326CrossRefGoogle Scholar
Rasskazov, A., Fragione, G., Leigh, N., et al. 2019, ApJ, 878, 17pp.10.3847/1538-4357/ab1c5dCrossRefGoogle Scholar
Reines, A. E., Sivakoff, G. R., Johnson, K. E., & Brogan, C. L., 2011, Nature, 470:6668CrossRefGoogle Scholar
Schödel, R., Feldmeier, A., Kunneriath, D., et al. 2014, A&A, 566:A47Google Scholar
Tremaine, S. D., Ostriker, J. P., & Spitzer, L. Jr., 1975, ApJ, 196:407411CrossRefGoogle Scholar
Tsatsi, A., Mastrobuono-Battisti, A., van de Ven, G., et al. 2017, MNRAS, 464:37203727CrossRefGoogle Scholar