Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-22T11:50:32.506Z Has data issue: false hasContentIssue false

Connecting high-redshift galaxy populations through observations of local Damped Lyman Alpha dwarf galaxies

Published online by Cambridge University Press:  01 June 2008

Regina E. Schulte-Ladbeck*
Affiliation:
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I report on observations of the z=t 0.01 dwarf galaxy SBS1543+593 which is projected onto the background QSO HS1543+5921. As a star-forming galaxy first noted in emission, this dwarf is playing a pivotal role in our understanding of high-redshift galaxy populations, because it also gives rise to a Damped Lyman Alpha system. This enabled us to analyze, for the first time, the chemical abundance of α elements in a Damped Lyman Alpha galaxy using both, emission and absorption diagnostics. We find that the abundances agree with one another within the observational uncertainties. I discuss the implications of this result for the interpretation of high-redshift galaxy observations. A catalog of dwarf-galaxy–QSO projections culled from the Sloan Digital Sky Survey is provided to stimulate future work.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Bowen, D. V., Tripp, T. M., & Jenkins, E. B. 2001, AJ, 121, 1456CrossRefGoogle Scholar
Bowen, D. V., Jenkins, E. B., Pettini, M., & Tripp, T. M. 2005, ApJ, 635, 880CrossRefGoogle Scholar
Burkholder, V., Impey, C., & Sprayberry, D. 2001, AJ, 122, 2318CrossRefGoogle Scholar
Deharveng, L., Peña, M., Caplan, J., & Costero, R. 2000, MNRAS, 311, 329CrossRefGoogle Scholar
König, B., Schulte-Ladbeck, R. E., & Cherinka, B. 2006, AJ, 132, 1844CrossRefGoogle Scholar
Haehnelt, M. G., Steinmetz, M., & Rauch, M. 1998, ApJ, 495, 647CrossRefGoogle Scholar
Moos, H. W., et al. 2002, ApJS, 140, 3CrossRefGoogle Scholar
Ostriker, J. P. & Heisler, J. 1984, ApJ, 278, 1CrossRefGoogle Scholar
Reimers, D. & Hagen, H.-J. 1998, A&A, 329, L25Google Scholar
Rosenberg, J. L., Bowen, D. V., Tripp, T. M., & Brinks, E. 2006, AJ, 132, 478CrossRefGoogle Scholar
Schulte-Ladbeck, R. E., Rao, S. M., Drozdovsky, I. O., Turnshek, D. A., Nestor, D. B., & Pettini, M. 2004, ApJ, 600, 613CrossRefGoogle Scholar
Schulte-Ladbeck, R. E., König, B., Miller, C. J., Hopkins, A. M., Drozdovsky, I. O., Turnshek, D. A., & Hopp, U. 2005, ApJL, 625, L79CrossRefGoogle Scholar
Searle, L. 1971 ApJ, 168, 327CrossRefGoogle Scholar
Williams, R., Jenkins, E. B., Baldwin, J. A., Zhang, Y., Sharpee, B., Pellegrini, E., & Phillips, M. 2008, ApJ, 677, 1100CrossRefGoogle Scholar