Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T05:48:12.175Z Has data issue: false hasContentIssue false

Confronting substellar theoretical models with stellar ages

Published online by Cambridge University Press:  01 October 2008

Trent J. Dupuy
Affiliation:
Institute for Astronomy, University of Hawaiʻi, 2680 Woodlawn Drive, Honolulu, HI 96822USA e-mail: [email protected]
Michael C. Liu
Affiliation:
Institute for Astronomy, University of Hawaiʻi, 2680 Woodlawn Drive, Honolulu, HI 96822USA e-mail: [email protected]
Michael J. Ireland
Affiliation:
School of Physics, University of SydneyNSW2006, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

By definition, brown dwarfs never reach the main-sequence, cooling and dimming over their entire lifetime, thus making substellar models challenging to test because of the strong dependence on age. Currently, most brown dwarfs with independently determined ages are companions to nearby stars, so stellar ages are at the heart of the effort to test substellar models. However, these models are only fully constrained if both the mass and age are known. We have used the Keck adaptive optics system to monitor the orbit of HD 130948BC, a brown dwarf binary that is a companion to the young solar analog HD 130948A. The total dynamical mass of 0.109 ± 0.003 M is the most precise mass measurement (3%) for any brown dwarf binary to date and shows that both components are substellar for any plausible mass ratio. The ensemble of available age indicators from the primary star suggests an age comparable to the Hyades, with the most precise age being 0.79+0.22−0.15 Gyr based on gyrochronology. Therefore, HD 130948BC is unique among field L and T dwarfs as it possesses a well-determined mass, luminosity, and age. Our results indicate that substellar evolutionary models may underpredict the luminosity of brown dwarfs by as much as a factor of ≈2–3×. The implications of such a systematic error in evolutionary models would be far-reaching, for example, affecting determinations of the initial mass function and predictions of the radii of extrasolar gas-giant planets. This result is largely based on the reliability of stellar age estimates, and the case study of HD 130948A highlights the difficulties in determining the age of an arbitrary field star, even with the most up-to-date chromospheric activity and gyrochronology relations. In order to better assess the potential systematic errors present in substellar models, more refined age estimates for HD 130948A and other stars with binary brown dwarf companions (e.g., ϵ Ind Bab) are critically needed.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Barnes, S. A. 2007, ApJ, 669, 1167CrossRefGoogle Scholar
Bouy, H., Brandner, W., Martín, E. L., Delfosse, X., Allard, F., & Basri, G. 2003, AJ, 126, 1526CrossRefGoogle Scholar
Bouy, H. et al. , 2004, A&A, 423, 341Google Scholar
Burrows, A., Marley, M., Hubbard, W. B., Lunine, J. I., Guillot, T., Saumon, D., Freedman, R., Sudarsky, D., & Sharp, C. 1997, ApJ, 491, 856CrossRefGoogle Scholar
Chabrier, G., Baraffe, I., Allard, F., & Hauschildt, P. 2000, ApJ, 542, 464CrossRefGoogle Scholar
Chen, Y. Q., Nissen, P. E., Benoni, T., & Zhao, G. 2001, A&A, 371, 943Google Scholar
Duncan, D. K. 1981, ApJ, 248, 651CrossRefGoogle Scholar
Dupuy, T. J., Liu, M. C., & Ireland, M. J. 2008, ApJ, in press (astro-ph/0807.2450)Google Scholar
Gaidos, E. J. 1998, PASP, 110, 1259CrossRefGoogle Scholar
Gaidos, E. J., Henry, G. W., & Henry, S. M. 2000, AJ, 120, 1006CrossRefGoogle Scholar
Golimowski, D. A. et al. , 2004, AJ, 128, 1733CrossRefGoogle Scholar
Henry, T. J., Soderblom, D. R., Donahue, R. A., & Baliunas, S. L. 1996, AJ, 111, 439CrossRefGoogle Scholar
Hobbs, L. M. 1985, ApJ, 290, 284CrossRefGoogle Scholar
Hünsch, M., Schmitt, J. H. M. M., Sterzik, M. F., & Voges, W. 1999, A&AS, 135, 319Google Scholar
Ireland, M. J., Kraus, A., Martinache, F., Lloyd, J. P., & Tuthill, P. G. 2008, ApJ, 678, 463CrossRefGoogle Scholar
Leinert, C., Jahreiß, H., Woitas, J., Zucker, S., Mazeh, T., Eckart, A., & Köhler, R. 2001, A&A, 367, 183Google Scholar
Liu, M. C., Dupuy, T. J., & Ireland, M. J. 2008, ApJ, in press (astro-ph/0807.0238)Google Scholar
Mamajek, E., & Hillenbrand, L. 2008, ApJ, 687, 1264CrossRefGoogle Scholar
McCaughrean, M. J., Close, L. M., Scholz, R.-D., Lenzen, R., Biller, B., Brandner, W., Hartung, M., & Lodieu, N. 2004, A&A, 413, 1029Google Scholar
Potter, D., Martín, E. L., Cushing, M. C., Baudoz, P., Brandner, W., Guyon, O., & Neuhäuser, R. 2002, ApJ, 567, L133CrossRefGoogle Scholar
Seifahrt, A., Röll, T., Neuhäuser, R., Reiners, A., Kerber, F., Käufl, H. U., Siebenmorgen, R., & Smette, A. 2008, A&A, 484, 429Google Scholar
Simon, M., Bender, C., & Prato, L. 2006, ApJ, 644, 1183CrossRefGoogle Scholar
Soderblom, D. R., Fedele, S. B., Jones, B. F., Stauffer, J. R., & Prosser, C. F. 1993a, AJ, 106, 1080CrossRefGoogle Scholar
Soderblom, D. R., Jones, B. F., Balachandran, S., Stauffer, J. R., Duncan, D. K., Fedele, S. B., & Hudon, J. D. 1993b, AJ, 106, 1059CrossRefGoogle Scholar
Soderblom, D. R., Pilachowski, C. A., Fedele, S. B., & Jones, B. F. 1993c, AJ, 105, 2299CrossRefGoogle Scholar
Stassun, K. G., Mathieu, R. D., & Valenti, J. A. 2006, Nature, 440, 311CrossRefGoogle Scholar
Stelzer, B., & Neuhäuser, R. 2001, A&A, 377, 538Google Scholar
Stern, R. A., Schmitt, J. H. M. M., & Kahabka, P. T. 1995, ApJ, 448, 683CrossRefGoogle Scholar
Takeda, G., Ford, E. B., Sills, A., Rasio, F. A., Fischer, D. A., & Valenti, J. A. 2007, ApJS, 168, 297CrossRefGoogle Scholar
Valenti, J. A. & Fischer, D. A. 2005, ApJS, 159, 141CrossRefGoogle Scholar
van Leeuwen, F. 2007, Hipparcos, the New Reduction of the Raw DataCrossRefGoogle Scholar
Wright, J. T., Marcy, G. W., Butler, R. P., & Vogt, S. S. 2004, ApJS, 152, 261CrossRefGoogle Scholar
Zapatero Osorio, M. R., Lane, B. F., Pavlenko, Y., Martín, E. L., Britton, M., & Kulkarni, S. R. 2004, ApJ, 615, 958CrossRefGoogle Scholar