Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T18:13:20.985Z Has data issue: false hasContentIssue false

Conditions for the existence of Kelvin-Helmholtz instability in a CME

Published online by Cambridge University Press:  09 September 2016

Andrés Páez
Affiliation:
Universidade de São Paulo, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Rua do Matão 1226, São Paulo, SP, 05508-090, Brazil email: [email protected]
Vera Jatenco-Pereira
Affiliation:
Universidade de São Paulo, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Rua do Matão 1226, São Paulo, SP, 05508-090, Brazil email: [email protected]
Diego Falceta-Gonçcalves
Affiliation:
Universidade de São Paulo, Escola de Artes, Ciências e Humanidades, Rua Arlindo Bettio 1000, São Paulo, SP, 03828-000, Brazil email: [email protected]
Merav Opher
Affiliation:
Astronomy Department, Boston University, Boston, MA 02215, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The presence of Kelvin-Helmholtz instability (KHI) in the sheaths of Coronal Mass Ejections (CMEs) has been proposed and observed by several authors in the literature. In the present work, we assume their existence and propose a method to constrain the local properties, like the CME magnetic field intensity for the development of KHI. We study a CME in the initiation phase interacting with the slow solar wind (Zone I) and with the fast solar wind (Zone II). Based on the theory of magnetic KHI proposed by Chandrasekhar (1961) we found the radial heliocentric interval for the KHI existence, in particular we constrain it with the CME magnetic field intensity. We conclude that KHI may exist in both CME Zones but it is perceived that Zone I is more appropriated for the KHI formation.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Antonucci, E., Dodero, M. A., & Giordano, S. 2000, Solar Phys., 197, 115 CrossRefGoogle Scholar
Brueckner, G. E., Howard, R. A., & Koomen, M. J., et al. 1995, Solar Phys., 162, 357 Google Scholar
Chandrasekhar, S. 1961, Hydrodynamic and hydromagnetic stability, International Series of Monographs on Physics, Oxford: Clarendon.Google Scholar
Coles, W. A., Esser, R., Lvhaug, U.-P., & Markkanen, J. 1991, J. Geophys. Res., 96, 13849 Google Scholar
Fludra, A., Del Zanna, G., Alexander, D., & Bromage, B. J. I. 1999, J. Geophys. Res., 104, 9709 Google Scholar
Foullon, C., Vernichte, E., Nakariakov, V. M., Nykyri, K., & Farrugia, C. J. 2011, ApJ., 729, L8 Google Scholar
Foullon, C., Vernichte, E., Nykyri, K., Aschwanden, M. J., & Hannah, I. G. 2013, ApJ, 767, 170 Google Scholar
Hannah, I. G. & Kontar, E. P. 2013, A&A, 553, A10 Google Scholar
Harra, L. K., Sakao, T., & Mandrini, C. H., et al. 2008, ApJ, 676, L147 Google Scholar
He, J.-S., Marsch, E., Tu, C.-Y., Guo, L.-J., & Tian, H. 2010, A&A, 516, A14 Google Scholar
Illing, R. M. E. & Hundhausen, A. J. 1985, J. Geophys. Res., 90, 490 Google Scholar
Kay, C., Opher, M., & Evans, R. M. 2015, ApJ, 805, 168 Google Scholar
Manchester, W. B., Gombosi, T. I., Roussev, I., de Zeeuw, D. L., Sokolov, I. V., Powell, K. G., Tóth, G., & Opher, M. 2004, J. Geophys, Res., 109, 1102 Google Scholar
Möstl, U. V., Temmer, M., & Veronig, A. M. 2013, ApJ, 766, L12 CrossRefGoogle Scholar
Nykyri, K. & Foullon, C. 2013, Geophys. Res. Lett., 40, 4154 Google Scholar
Quémerais, E., Lallement, R., Koutroumpa, D., & Lamy, P. 2007, ApJ, 667, 1229 Google Scholar
Rigozo, N. R., Dal Lago, A., & Nordeman, D. J. R. 2011, ApJ, 738, 107 Google Scholar