Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-20T21:21:57.819Z Has data issue: false hasContentIssue false

Complexity in small-scale dwarf spheroidal galaxies

Published online by Cambridge University Press:  09 March 2010

Andreas Koch
Affiliation:
University of Leicester, University Road, LE1 7RH Leicester, UK email: [email protected]
Daniel Adén
Affiliation:
Lund Observatory, Box 43, SE-221 00 Lund, Sweden
Eva K. Grebel
Affiliation:
Astronomisches Rechen-Institut, Mönchhofstrasse 12-14, 69120 Heidelberg, Germany
Sofia Feltzing
Affiliation:
Lund Observatory, Box 43, SE-221 00 Lund, Sweden
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Our knowledge about the chemical evolution of the more luminous dwarf spheroidal (dSph) galaxies is constantly growing. However, little is known about the enrichment of the ultrafaint systems recently discovered in large numbers in large Sky Surveys. Low-resolution spectroscopy and photometric data indicate that these galaxies are predominantly metal-poor. On the other hand, the most recent high-resolution abundance analyses indicate that some of these galaxies experienced highly inhomogenous chemical enrichment, where star formation proceeds locally on the smallest scales. Furthermore, these galaxy-contenders appear to contain very metal-poor stars with [Fe/H]< −3 dex and could be the sites of the first stars. Here, we consider the presently available chemical abundance information of the (ultra-) faint Milky Way satellite dSphs. In this context, some of the most peculiar element and inhomogeneous enrichment patterns will be discussed and related to the question of to what extent the faintest dSph candidates and outer halo globular clusters could have contributed to the metal-poor Galactic halo.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Adén, D., et al. 2009a, A&A, in press (astro-ph/0908.3489)Google Scholar
Adén, D., et al. 2009b, ApJL, submittedGoogle Scholar
Bailin, J. & Ford, A. 2007, MNRAS, 375, L41CrossRefGoogle Scholar
Belokurov, V., et al. 2007, ApJ, 654, 897CrossRefGoogle Scholar
Carollo, D., et al. 2007, Nature, 450, 1020CrossRefGoogle Scholar
Cohen, J. G. & Huang, W. 2009, ApJ, 701, 1053CrossRefGoogle Scholar
Cohen, J. G. & Meléndez, J. 2005a, AJ, 129, 303CrossRefGoogle Scholar
Cohen, J. G. & Melendez, J. 2005b, AJ, 129, 1607CrossRefGoogle Scholar
D'Antona, F. & Caloi, V. 2008, MNRAS, 390, 693CrossRefGoogle Scholar
Faria, D., et al. 2007, A&A, 465, 357Google Scholar
Feltzing, S., Eriksson, K., Kleyna, , & Wilkinson, M. 2009, ApJL, in pressGoogle Scholar
Frebel, A., Simon, J. D., Geha, M., & Willman, B. 2009, ApJ, submitted (arXiv:0902.2395)Google Scholar
Gilmore, G., et al. 2007, ApJ, 663, 948CrossRefGoogle Scholar
Grebel, E. K., Gallagher, J. S. III, & Harbeck, D. 2003, AJ, 125, 1926CrossRefGoogle Scholar
Hartwick, F. D. A. 1987, NATO ASIC Proc. 207: The Galaxy, 281Google Scholar
Heger, A. & Woosley, S. E. 2008, ApJ, submitted (arXiv:0803.3161)Google Scholar
Helmi, A., et al. 2006, ApJL, 651, L121CrossRefGoogle Scholar
Hilker, M. 2006, A&A, 448, 171Google Scholar
Honda, S., Aoki, W., Ishimaru, Y., & Wanajo, S. 2007, ApJ, 666, 1189CrossRefGoogle Scholar
Kirby, E. N., Simon, J. D., Geha, M., Guhathakurta, P., & Frebel, A. 2008, ApJL, 685, L43CrossRefGoogle Scholar
Koch, A., et al. 2006, AJ, 131, 895CrossRefGoogle Scholar
Koch, A., et al. 2008a, AJ, 135, 1580CrossRefGoogle Scholar
Koch, A., McWilliam, A., Grebel, E. K., Zucker, D. B., & Belokurov, V. 2008b, ApJ, 688, L13CrossRefGoogle Scholar
Koch, A., et al. 2008c, ApJ, 689, 958CrossRefGoogle Scholar
Koch, A. 2009, Astronomische Nachrichten, 330, 675CrossRefGoogle Scholar
Koch, A., Côté, P., & McWilliam, A. 2009, A&A, in press (astro-ph/0908.2629v1)Google Scholar
Letarte, B., Hill, V., Jablonka, P., Tolstoy, E., François, P., & Meylan, G. 2006, A&A, 453, 547Google Scholar
Martin, N. F., de Jong, J. T. A., & Rix, H.-W. 2008, ApJ, 684, 1075CrossRefGoogle Scholar
Moore, B., et al. 1999, ApJL, 524, L19CrossRefGoogle Scholar
Norris, J. E., et al. 2008, ApJL, 689, L113CrossRefGoogle Scholar
Qian, Y.-Z. & Wasserburg, G. J. 2003, ApJ, 588, 1099CrossRefGoogle Scholar
Robertson, B., Bullock, J. S., Font, A. S., Johnston, K. V., & Hernquist, L. 2005, ApJ, 632, 872CrossRefGoogle Scholar
Searle, L. & Zinn, R. 1978, ApJ, 225, 357CrossRefGoogle Scholar
Shetrone, M. D., Côté, P., & Sargent, W. L. W. 2001, ApJ, 548, 592CrossRefGoogle Scholar
Simon, J. D. & Geha, M. 2007, ApJ, 670, 313CrossRefGoogle Scholar
Sneden, C., Pilachowski, C. A., & Kraft, R. P. 2000, AJ, 120, 1351CrossRefGoogle Scholar
Strigari, L. E., et al. 2008, Nature, 454, 1096CrossRefGoogle Scholar
Tolstoy, E., Hill, V., & Tosi, M. 2009 ARA&A, in press (arXiv:0904.4505)Google Scholar
Unavane, M., Wyse, R. F. G., & Gilmore, G. 1996, MNRAS, 278, 727CrossRefGoogle Scholar