Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-07T22:04:45.944Z Has data issue: false hasContentIssue false

Comparison of Limb-Darkening Laws from Plane-Parallel and Spherically-Symmetric Model Stellar Atmospheres

Published online by Cambridge University Press:  23 April 2012

Hilding R. Neilson*
Affiliation:
Argelander-Institut für Astronomie, Bonn Universität, Auf Dem Hügel 71, Bonn, D-53121, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Limb-darkening is a fundamental constraint for modeling eclipsing binary and planetary transit light curves. As observations, for example from Kepler, CoRot, and Most, become more precise then a greater understanding of limb-darkening is necessary. However, limb-darkening is typically modeled as simple parameterizations fit to plane-parallel model stellar atmospheres that ignores stellar atmospheric extension. In this work, I compute linear, quadratic and four-parameter limb-darkening laws from grids of plane-parallel and spherically-symmetric model stellar atmospheres in a temperature and gravity range representing stars evolving on the Red Giant branch. The limb-darkening relations for each geometry are compared and are found to fit plane-parallel models much better than the spherically-symmetric models. Assuming that limb-darkening from spherically-symmetry model atmospheres are more physically representative of actual stellar limb-darkening than plane-parallel models, then these limb-darkening laws will not fit the limb of a stellar disk leading to errors in a light curve fit. This error will increase with a star's atmospheric extension.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Al-Naimiy, H. M. 1978, Ap&SS, 53, 181Google Scholar
Claret, A. 2000, A&A, 363, 1081Google Scholar
Claret, A. 2008, A&A, 482, 259Google Scholar
Claret, A., Diaz-Cordoves, J., & Gimenez, A. 1995, A&AS, 114, 247Google Scholar
Claret, A. & Hauschildt, P. H. 2003, A&A, 412, 241Google Scholar
Croll, B., Albert, L., Jayawardhana, R., Miller-Ricci Kempton, E., Fortney, J. J., Murray, N., & Neilson, H. 2011, ApJ, 736, 78CrossRefGoogle Scholar
Fields, D. L., Albrow, M. D., & An, J., et al. , 2003, ApJ, 596, 1305CrossRefGoogle Scholar
Gustafsson, B., Edvardsson, B., Eriksson, K., Jørgensen, U. G., Nordlund, Å., & Plez, B. 2008, A&A, 486, 951Google Scholar
Hauschildt, P. H., Allard, F., Ferguson, J., Baron, E., & Alexander, D. R. 1999, ApJ, 525, 871Google Scholar
Heyrovský, D. 2003, ApJ, 594, 464CrossRefGoogle Scholar
Heyrovský, D. 2007, ApJ, 656, 483CrossRefGoogle Scholar
Howarth, I. D. 2011, MNRAS, 413, 1515Google Scholar
Knutson, H. A., Charbonneau, D., Noyes, R. W., Brown, T. M., & Gilliland, R. L. 2007, ApJ, 655, 564CrossRefGoogle Scholar
Lester, J. B. & Neilson, H. R. 2008, A&A, 491, 633Google Scholar
Mihalas, D. 1978, Stellar atmospheres /2nd edition/, ed. Hevelius, J.Google Scholar
Neilson, H. R. & Lester, J. B. 2008, A&A, 490, 807Google Scholar
Neilson, H. R. & Lester, J. B. 2011, A&A, 530, A65Google Scholar
Sing, D. K. 2010, A&A, 510, A21Google Scholar
Wade, R. A. & Rucinski, S. M. 1985, A&AS, 60, 471Google Scholar
Wittkowski, M., Aufdenberg, J. P., & Kervella, P. 2004, A&A, 413, 711Google Scholar
Zub, M. & Cassan, A., Heyrovský, et al. , 2011, A&A, 525, A15Google Scholar