Published online by Cambridge University Press: 21 December 2011
The insoluble organic material preserved in primitive chondritic meteorites shares many similarities with the refractory organic material in interplanetary dust particles and comets, suggesting that there is a genetic link between the organic matter in objects that formed between ~3 AU and ~30 AU from the Sun. These similarities include large D and 15N enrichments in bulk and even more extreme enrichments in isotopic hotspots. The enrichments attest to formation in very cold environments, either in the outer Solar System or the protosolar molecular cloud. There are many properties of this organic material that are consistent with an interstellar origin, but a Solar System origin cannot be ruled out. Similar organic material is presumably an important component of most protoplanetary disks, and heating or sputtering of this material would be a source of PAHs in disks. The soluble organic matter was more heavily effected by processes on the chondritic parent bodies than the insoluble material. Amino acids, for instance, probably formed by reaction of ketones and aldehydes with NH3 and HCN. The accretion of the relatively volatile NH3 and HCN, presumably in ices, strengthens the chondrite-comet connection. However, unlike most comets the water in chondrites, when it was accreted, had D/H ratios that were similar to or depleted relative to Earth.