Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T10:14:20.322Z Has data issue: false hasContentIssue false

The cometary impactor flux at the Earth

Published online by Cambridge University Press:  01 August 2006

Paul R. Weissman*
Affiliation:
Science Division, Jet Propulsion Laboratory, Pasadena, CA 91109USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Comets account for a small but very significant fraction of impactors on the Earth. Although the total number of Earth-crossing comets is modest as compared with asteroids, the more eccentric and inclined orbits of the comets result in much higher encounter velocities with the planet. Additionally, some Earth-crossing comets are significantly larger than any current near-Earth asteroids (NEAs); comets 1P/Halley and C/1995 O1 Hale-Bopp are good examples of this. Thus, the most energetic impacts on the Earth likely result from comets and not NEAs. The mean impact probability for long-period comets is 2.4× 10−9 per comet per perihelion passage, assuming the perihelion distribution of Everhart (1967), with a most probable encounter velocity of 53.5 km sec−1. There are 21 known Earth-crossing Jupiter-family comets with a mean impact probability of 1.6× 10−9 per comet per year and a most probable encounter velocity of 17.0 km sec−1. For the 16 known Earth-crossing Halley-type comets the mean impact probability is 1.2× 10−10 per year with a most probable encounter velocity of 51.3 km sec−1. The poor knowledge of the size distribution of cometary nuclei makes it difficult to estimate actual impact energies at this time, though that situation is slowly improving, in particular for the Jupiter-family comets.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Bailey, M.E. 1984, MNRAS 211, 347CrossRefGoogle Scholar
Bottke, W.F., Morbidelli, A., Jedicke, R. et al. , 2002, Icarus 156, 399CrossRefGoogle Scholar
Chyba, C.F., Thomas, P.J. & Zahnle, K.J. 1993, Nature 361, 40CrossRefGoogle Scholar
Dones, L., Weissman, P.R., Levison, H.F. & Duncan, M.J. 2004, in: Festou, M.C., Keller, H.U. & Weaver, H.A. (eds.), Comets II (University of Arizona Press, Tucson), p. 153CrossRefGoogle Scholar
Duncan, M.J., Quinn, T. & Tremaine, S. 1988, Astrophys. J. 328, 69CrossRefGoogle Scholar
Duncan, M.J. & Levison, H.F. 1997, Science 276, 1670CrossRefGoogle Scholar
Emel'Yanenko, V.V. & Bailey, M.E. 1996, Earth, Moon & Planets 72, 35CrossRefGoogle Scholar
Everhart, E. 1967, Astron. J., 72, 1002CrossRefGoogle Scholar
Fernández, J.A. 1980, MNRAS 192, 481CrossRefGoogle Scholar
Fernández, Y.R., Jewitt, D.C. & Sheppard, S.S. 2005, Astron. J. 130, 308CrossRefGoogle Scholar
Kessler, D.J. 1981, Icarus 48, 39CrossRefGoogle Scholar
Lamy, P.L., Toth, I., Fernández, Y.R. & Weaver, H.A. 2004, in: Festou, M.C., Keller, H.U. & Weaver, H.A. (eds.), Comets II (University of Arizona Press, Tucson), p. 223CrossRefGoogle Scholar
Levison, H.F. 1996, ASP Conf. Ser. Completing the Inventory of the Solar System, 107, p. 173Google Scholar
Levison, H.F., Dones, L. & Duncan, M.J. 2001, Astron. J. 121, 2253CrossRefGoogle Scholar
Levison, H.F., Morbidelli, A., Dones, L. et al. , 2002, Science 296, 2212CrossRefGoogle Scholar
Lowry, S.C. & Weissman, P.R. 2003, Icarus 164, 492CrossRefGoogle Scholar
Marsden, B.G., & Steel, D.I. 1994, in: Gehrels, T., Matthews, M.S. & Schumann, A.M. (eds.), Hazards Due to Comets and Asteroids (University of Arizona Press, Tucson), p. 221Google Scholar
Meech, K.J., Hainaut, O.R. & Marsden, B.G. 2004, Icarus 170, 463CrossRefGoogle Scholar
Oort, J.H. 1950, Bull. Astron. Inst. Neth. 11, 91Google Scholar
Öpik, E.J. 1951, Proc. R. Irish Acad. 54, 165Google Scholar
Shoemaker, E.M., Weissman, P.R. & Shoemaker, C.S. 1994, in: Gehrels, T., Matthews, M.S. & Schumann, A.M. (eds.), Hazards Due to Comets and Asteroids (University of Arizona Press, Tucson), p. 313Google Scholar
Weaver, H.A., Feldman, P.D., A'Hearn, M.F. & Arpigny, C. 1997, Science 275, 1900CrossRefGoogle Scholar
Weissman, P.R. 1979, In Dynamics of the Solar System, p. 277CrossRefGoogle Scholar
Weissman, P.R. 1982, In Geol. Soc. Amer. Special Paper 190: Geological Implications of Impacts of Large Asteroids and Comets on the Earth, p. 15CrossRefGoogle Scholar
Weissman, P.R. 1989, In Geol. Soc. Amer. Special Paper 247: Global Catastrophes in Earth History, p. 211Google Scholar
Weissman, P.R. 1986, Nature 320, 242CrossRefGoogle Scholar
Weissman, P.R. 1996, ASP Conf. Ser.: Completing the Inventory of the Solar System 107, p. 265Google Scholar
Weissman, P.R. 1997, In Near-Earth Objects, Annals NY Acad. Sci. 822, 67Google Scholar
Weissman, P.R. & Levison, H.F. 1997, Astrophys. J. Lett. 488 133CrossRefGoogle Scholar
Weissman, P.R., Bottke, W.F. & Levison, H.F., 2002, in: Bottke, W.F., Cellino, A., Paolicchi, P. & Binzel, R.P (eds.), Asteroids III (University of Arizona Press, Tucson), p. 669CrossRefGoogle Scholar
Weissman, P.R. & Lowry, S.C. 2003, LPSC 34, #2003Google Scholar
Weissman, P.R., Asphaug, E. & Lowry, S.C. 2004, in: Festou, M.C., Keller, H.U. & Weaver, H.A. (eds.), Comets II (University of Arizona Press, Tucson), p. 337CrossRefGoogle Scholar