Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T05:16:11.775Z Has data issue: false hasContentIssue false

Collisionless Dynamics and the Cosmic Web

Published online by Cambridge University Press:  12 October 2016

Oliver Hahn*
Affiliation:
Department of Physics, ETH Zurich, CH-8093 Zürich, Switzerland email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I review the nature of three-dimensional collapse in the Zeldovich approximation, how it relates to the underlying nature of the three-dimensional Lagrangian manifold and naturally gives rise to a hierarchical structure formation scenario that progresses through collapse from voids to pancakes, filaments and then halos. I then discuss how variations of the Zeldovich approximation (based on the gravitational or the velocity potential) have been used to define classifications of the cosmic large-scale structure into dynamically distinct parts. Finally, I turn to recent efforts to devise new approaches relying on tessellations of the Lagrangian manifold to follow the fine-grained dynamics of the dark matter fluid into the highly non-linear regime and both extract the maximum amount of information from existing simulations as well as devise new simulation techniques for cold collisionless dynamics.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Abel, T., Hahn, O., & Kaehler, R. Tracing the dark matter sheet in phase space. MNRAS, 427: 61–76, November 2012.CrossRefGoogle Scholar
Angulo, R. E., Hahn, O., & Abel, T. The warm dark matter halo mass function below the cut-off scale. MNRAS, 434: 3337–3347, October 2013.Google Scholar
Angulo, R. E., Chen, R., Hilbert, S., & Abel, T. Towards noiseless gravitational lensing simulations. MNRAS, 444: 2925–2937, November 2014.Google Scholar
Aragón-Calvo, M. A., Jones, B. J. T., van de Weygaert, R., & van der Hulst, J. M. The multiscale morphology filter: identifying and extracting spatial patterns in the galaxy distribution. A&A, 474: 315–338, October 2007a.Google Scholar
Aragón-Calvo, M. A., van de Weygaert, R. B. J. T., Jones, , & van der Hulst, J. M. Spin Alignment of Dark Matter Halos in Filaments and Walls. ApJ, 655: L5–L8, January 2007b.CrossRefGoogle Scholar
Aragón-Calvo, M. A., van de Weygaert, R., & Jones, B. J. T.. Multiscale phenomenology of the cosmic web. MNRAS, 408: 2163–2187, November 2010.Google Scholar
Arnold, V. I., Shandarin, S. F., & Zeldovich, I. B. The large scale structure of the universe. I - General properties One- and two-dimensional models. Geophysical and Astrophysical Fluid Dynamics, 20: 111–130, 1982.Google Scholar
Cautun, M., van de Weygaert, R., & Jones, B. J. T. NEXUS: tracing the cosmic web connection. MNRAS, 429: 1286–1308, February 2013.Google Scholar
Codis, S., Pichon, C., Devriendt, J., Slyz, A., Pogosyan, D., Dubois, Y., & Sousbie, T. Connecting the cosmic web to the spin of dark haloes: implications for galaxy formation. MNRAS, 427: 3320–3336, December 2012.Google Scholar
Crocce, M., Pueblas, S., & Scoccimarro, R. Transients from initial conditions in cosmological simulations. MNRAS, 373: 369–381, November 2006.Google Scholar
Falck, B. L., Neyrinck, M. C., & Szalay, A. S. ORIGAMI: Delineating Halos Using Phase-space Folds. ApJ, 754: 126, August 2012.Google Scholar
Forero-Romero, J. E., Hoffman, Y., Gottlöber, S., Klypin, A., & Yepes, G. A dynamical classification of the cosmic web. MNRAS, 396: 1815–1824, July 2009.Google Scholar
Hahn, O., Carollo, C. M., Porciani, C., & Dekel, A. The evolution of dark matter halo properties in clusters, filaments, sheets and voids. MNRAS, 381: 41–51, October 2007a.Google Scholar
Hahn, O., Porciani, C., Carollo, C. M., & Dekel, A. Properties of dark matter haloes in clusters, filaments, sheets and voids. MNRAS, 375: 489–499, February 2007b.Google Scholar
Hahn, O., Abel, T., & Kaehler, R. A new approach to simulating collisionless dark matter fluids. MNRAS, 434: 1171–1191, September 2013.Google Scholar
Hahn, O., Angulo, R. E., & Abel, T. The Properties of Cosmic Velocity Fields. ArXiv e-prints, April 2014.Google Scholar
Hidding, J., Shandarin, S. F., & van de Weygaert, R. The Zel'dovich approximation: key to understanding cosmic web complexity. MNRAS, 437: 3442–3472, February 2014.CrossRefGoogle Scholar
Hoffman, Y., Metuki, O., Yepes, G., Gottlöber, S., Forero-Romero, J. E., Libeskind, N. I., & Knebe, A. A kinematic classification of the cosmic web. MNRAS, 425: 2049–2057, September 2012.Google Scholar
Kaehler, R., Hahn, O., & Abel, T. A Novel Approach to Visualizing Dark Matter Simulations. ArXiv e-prints, August 2012.Google Scholar
Kitaura, F.-S., Angulo, R. E., Hoffman, Y., & Gottlöber, S.. Estimating cosmic velocity fields from density fields and tidal tensors. MNRAS, 425: 2422–2435, October 2012.Google Scholar
Neyrinck, M. C. and Shandarin, S. F. Tessellating the cosmological dark-matter sheet: origami creases in the universe and ways to find them. ArXiv e-prints, July 2012.Google Scholar
Pichon, C. and Bernardeau, F. Vorticity generation in large-scale structure caustics. A&A, 343: 663–681, March 1999.Google Scholar
Schneider, A., Smith, R. E., & Reed, D. Halo mass function and the free streaming scale. MNRAS, 433: 1573–1587, August 2013.Google Scholar
Shandarin, S., Habib, S., & Heitmann, K. Cosmic web, multistream flows, and tessellations. Phys. Rev. D, 85 (8): 083005, April 2012.CrossRefGoogle Scholar
Shandarin, S. F. and Zeldovich, Y. B. The large-scale structure of the universe: Turbulence, intermittency, structures in a self-gravitating medium. Reviews of Modern Physics, 61: 185–220, April 1989.Google Scholar
Sousbie, T. The persistent cosmic web and its filamentary structure - I. Theory and implementation. MNRAS, 414: 350–383, June 2011.Google Scholar
Vogelsberger, M., White, S. D. M., Helmi, A., & Springel, V. The fine-grained phase-space structure of cold dark matter haloes. MNRAS, 385: 236–254, March 2008.Google Scholar
Wang, J. and White, S. D. M. Discreteness effects in simulations of hot/warm dark matter. MNRAS, 380: 93–103, September 2007.Google Scholar
White, S. D. M. and Vogelsberger, M. Dark matter caustics. MNRAS, 392: 281–286, January 2009.CrossRefGoogle Scholar
Zeldovich, Y. B. Gravitational instability: An approximate theory for large density perturbations. A&A, 5: 84–89, March 1970.Google Scholar