Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T17:36:11.853Z Has data issue: false hasContentIssue false

Cold gas studies of a z = 2.5 protocluster

Published online by Cambridge University Press:  29 March 2021

Minju M. Lee
Affiliation:
Max-Planck-Institut für Extraterrestrische Physik (MPE), Giessenbachstr. 1, D-85748 Garching, Germany
Ichi Tanaka
Affiliation:
Subaru Telescope, National Astronomical Observatory of Japan, 650 North Aohoku Place, Hilo, HI 96720, USA
Rohei Kawabe
Affiliation:
National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan The Graduate University for Advanced Studies (SOKENDAI), 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan Department of Astronomy, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present studies of a protocluster at z =2.5, an overdense region found close to a radio galaxy, 4C 23.56, using ALMA. We observed 1.1 mm continuum, two CO lines (CO (4–3) and CO (3–2)) and the lower atomic carbon line transition ([CI](3P1-3P0)) at a few kpc (0″.3-0″.9) resolution. The primary targets are 25 star-forming galaxies selected as Hα emitters (HAEs) that are identified with a narrow band filter. These are massive galaxies with stellar masses of > 1010 Mʘ that are mostly on the galaxy main sequence at z =2.5. We measure the molecular gas mass from the independent gas tracers of 1.1 mm, CO (3–2) and [CI], and investigate the gas kinematics of galaxies from CO (4–3). Molecular gas masses from the different measurements are consistent with each other for detection, with a gas fraction (fgas = Mgas/(Mgas+ Mstar)) of ≃ 0.5 on average but with a caveat. On the other hand, the CO line widths of the protocluster galaxies are typically broader by ˜50% compared to field galaxies, which can be attributed to more frequent, unresolved gas-rich mergers and/or smaller sizes than field galaxies, supported by our high-resolution images and a kinematic model fit of one of the galaxies. We discuss the expected scenario of galaxy evolution in protoclusters at high redshift but future large surveys are needed to get a more general view.

Type
Contributed Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union

References

Bouché, N., Dekel, A., Genzel, R., et al. 2010, ApJ, 718, 1001 10.1088/0004-637X/718/2/1001CrossRefGoogle Scholar
Coogan, R. T., Daddi, E., Sargent, M. T., et al. 2018, Mnras, 479, 703 Google Scholar
Dressler, A. 1980, ApJ, 236, 351 10.1086/157753CrossRefGoogle Scholar
Galametz, A., Stern, D., De Breuck, C., et al. 2012, ApJ, 749, 169 10.1088/0004-637X/749/2/169CrossRefGoogle Scholar
Genzel, R., Tacconi, L. J., Lutz, D., et al. 2015, ApJ, 800, 20 10.1088/0004-637X/800/1/20CrossRefGoogle Scholar
Kajisawa, M., Kodama, T., Tanaka, I., Yamada, T., & Bower, R. 2006, Mnras, 371, 577 10.1111/j.1365-2966.2006.10704.xCrossRefGoogle Scholar
Knopp, G. P. & Chambers, K. C. 1997, ApJs, 109, 367 10.1023/A:1017190411348CrossRefGoogle Scholar
Kodama, T., Hayashi, M., Koyama, Y., et al. 2015, in IAU Symposium, Vol. 309, Galaxies in 3D across the Universe, ed. Ziegler, B. L., Combes, F., Dannerbauer, H., & Verdugo, M., 255–258Google Scholar
Lee, M. M., Tanaka, I., Kawabe, R., et al. 2017, ApJ, 842, 55 10.3847/1538-4357/aa74c2CrossRefGoogle Scholar
Lee, M. M., Tanaka, I., Kawabe, R., et al. 2019, ApJ, 883, 92 10.3847/1538-4357/ab3b5bCrossRefGoogle Scholar
Lee, M. M., Tanaka, I., Iono, D., et al. 2021, e-prints, arXiv:2101.04691Google Scholar
Lilly, S. J., Carollo, C. M., Pipino, A., Renzini, A., & Peng, Y. 2013, ApJ, 772, 119 10.1088/0004-637X/772/2/119CrossRefGoogle Scholar
Madau, P. & Dickinson, M. 2014, AR&AA, 52, 415 Google Scholar
Mayo, J. H., Vernet, J., De Breuck, C., et al. 2012, A&A, 539, A33 Google Scholar
Noble, A. G., McDonald, M., Muzzin, A., et al. 2017, ApJl, 842, L21 10.3847/2041-8213/aa77f3CrossRefGoogle Scholar
Scoville, N., Arnouts, S., Aussel, H., et al. 2013, ApJs, 206, 3 Google Scholar
Tacconi, L. J., Neri, R., Genzel, R., et al. 2013, ApJ, 768, 74 10.1088/0004-637X/768/1/74CrossRefGoogle Scholar
Tacconi, L. J., Genzel, R., Saintonge, A., et al. 2018, ApJ, 853, 179 10.3847/1538-4357/aaa4b4CrossRefGoogle Scholar
Valentino, F., Magdis, G. E., Daddi, E., et al. 2018, ApJ, 869, 27 10.3847/1538-4357/aaeb88CrossRefGoogle Scholar
Valentino, F., Magdis, G. E., Daddi, E., et al. 2020, ApJ, 890, 24 10.3847/1538-4357/ab6603CrossRefGoogle Scholar
Zeballos, M., Aretxaga, I., Hughes, D. H., et al. 2018, Mnras, 479, 4577 10.1093/mnras/sty1714CrossRefGoogle Scholar