Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T01:47:52.813Z Has data issue: false hasContentIssue false

CNO abundance pattern in the red clump stars of the Milky Way

Published online by Cambridge University Press:  13 April 2010

G. Tautvaišienė
Affiliation:
Institute of Theoretical Physics and Astronomy of Vilnius University, Gostauto 12, LT-01108, Vilnius, Lithuania email: [email protected], [email protected], [email protected], [email protected]
E. Puzeras
Affiliation:
Institute of Theoretical Physics and Astronomy of Vilnius University, Gostauto 12, LT-01108, Vilnius, Lithuania email: [email protected], [email protected], [email protected], [email protected]
Y. Chorniy
Affiliation:
Institute of Theoretical Physics and Astronomy of Vilnius University, Gostauto 12, LT-01108, Vilnius, Lithuania email: [email protected], [email protected], [email protected], [email protected]
G. Barisevičius
Affiliation:
Institute of Theoretical Physics and Astronomy of Vilnius University, Gostauto 12, LT-01108, Vilnius, Lithuania email: [email protected], [email protected], [email protected], [email protected]
I. Ilyin
Affiliation:
Astrophysical Institute Potsdam, An der Sternwarte 16, DE-14482, Potsdam, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Hipparcos orbiting observatory has revealed a large number of helium-core- burning “clump” stars of the Galactic field. These low-mass stars exhibit signatures of extra-mixing processes that require modeling beyond the standard stellar theory. In this contribution we overview available results of 12C, 13C, N and O abundances obtained by high-resolution spectra for clump stars and discuss them in the light of current predictions of stellar evolution models.

Type
Poster Papers
Copyright
Copyright © International Astronomical Union 2010

References

Boothroyd, A. I. & Sackmann, I.-J. 1999, ApJ, 510, 232CrossRefGoogle Scholar
Canon, R. D. 1970, MNRAS, 150, 111CrossRefGoogle Scholar
Liu, Y. J., Zhao, G., Shi, J. R., Pietrzyński, G., & Gieren, W. 2007, MNRAS, 382, 553CrossRefGoogle Scholar
Luck, R. E. & Heiter, U. 2007, AJ, 133, 2464CrossRefGoogle Scholar
Mishenina, T. V., Bienaymé, O., Gorbaneva, T. I., Charbonnel, C., Soubiran, C., Korotin, S. A., & Kovtyukh, V. V. 2006, A&A, 456, 1109Google Scholar
Tautvaišiené, G. 1996, Baltic Astronomy, 5, 503Google Scholar
Tautvaišiené, G. & Puzeras, E. 2009, in The Galaxy Disk in Cosmological Context, IAU Symp., vol. 254Google Scholar
Zhao, G., Qiu, H. M., & Mao, S. 2001, ApJ, 551, L85CrossRefGoogle Scholar