Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T05:21:28.610Z Has data issue: false hasContentIssue false

Clumpy wind accretion in Supergiant X-ray Binaries

Published online by Cambridge University Press:  30 December 2019

Ileyk El Mellah
Affiliation:
Centre for mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, B-3001 Leuven, Belgium email: [email protected]
Andreas A. C. Sander
Affiliation:
Armagh Observatory and Planetarium, College Hill, Armagh, BT61 9DG, Northern Ireland Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
Jon O. Sundqvist
Affiliation:
KU Leuven, Instituut voor Sterrenkunde, Celestijnenlaan 200D, B-3001 Leuven, Belgium
Rony Keppens
Affiliation:
Centre for mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, B-3001 Leuven, Belgium email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Supergiant X-ray Binaries host a compact object, generally a neutron star, orbiting an evolved O/B star. Mass transfer proceeds through the intense radiatively-driven wind of the stellar donor, a fraction of which is captured by the gravitational field of the neutron star. The subsequent accretion process onto the neutron star is responsible for the abundant X-ray emission from those systems. They also display variations in time of the X-ray flux by a factor of a few 10, along with changes in the hardness ratios believed to be due to varying absorption along the line-of-sight. We used the most recent results on the inhomogeneities (aka clumps) in the non-stationary wind of massive hot stars to evaluate their impact on the time-variable accretion process. We ran three-dimensional simulations of the wind in the vicinity of the accretor to witness the formation of the bow shock and follow the inhomogeneous flow over several spatial orders of magnitude, down to the neutron star magnetosphere. In particular, we show that the impact of the clumps on the time-variability of the intrinsic mass accretion rate is severely damped by the crossing of the shock, compared to the purely ballistic Bondi-Hoyle-Lyttleton estimation. We also account for the variable absorption due to clumps passing by the line-of-sight and estimate the final effective variability of the mass accretion rate for different orbital separations. These results are confronted to recent analysis of Vela X-1 observations with Chandra by Grinberg et al. (2017). It shows that clumps account well for time-variability at low luminosity but can not generate, per se, the high luminosity activity observed.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

John, M. Blondin, Timothy, R. Kallman, Bruce, A. Fryxell, & Ronald, E. Taam. Hydrodynamic simulations of stellar wind disruption by a compact X-ray source. Astrophys. J., 356:591608, jun 1990 Google Scholar
Bondi, H. & Hoyle, F.. On the mechanism of accretion by stars. Mon. Not. R. Astron. Soc., 104:273, 1944.CrossRefGoogle Scholar
Bozzo, E., Falanga, M., & Stella, L.. Are There Magnetars in HighMass XRay Binaries? The Case of Supergiant Fast XRay Transients. Astrophys. J., 683(2):10311044, aug 2008.CrossRefGoogle Scholar
Castor, J. I., Abbott, D. C., & Klein, R. I.. Radiation-driven winds in Of stars. Astrophys. J., 195:157, jan 1975.CrossRefGoogle Scholar
Ducci, L., Sidoli, L., & Paizis, A.. INTEGRAL results on supergiant fast X-ray transients and accretion mechanism interpretation: ionization effect and formation of transient accretion discs. Mon. Not. R. Astron. Soc., 408(3):15401550, nov 2010.CrossRefGoogle Scholar
El Mellah, I. & Casse, F.. Numerical simulations of axisymmetric hydrodynamical Bondi–Hoyle accretion on to a compact object. Mon. Not. R. Astron. Soc., 454(3):26572667, oct 2015.CrossRefGoogle Scholar
El Mellah, I. & Casse, F.. A numerical investigation of wind accretion in persistent Supergiant X-ray Binaries I - Structure of the flow at the orbital scale. Mon. Not. R. Astron. Soc., 467(3):25852593, sep 2016.Google Scholar
El Mellah, I., Sundqvist, J. O., & Keppens, R.. Accretion from a clumpy massive-star wind in Supergiant X-ray binaries. Mon. Not. R. Astron. Soc. Vol. 475, Issue 3, p.3240-3252, 475:32403252, nov 2017.Google Scholar
El Mellah, I., Andreas, A. C. Sander, Sundqvist, J. O., & Keppens, R.. Formation of wind-captured discs in Supergiant X-ray binaries Consequences for Vela X-1 and Cygnus X-1. submitted, arXiv : 1810.12933Google Scholar
El Mellah, I., Sundqvist, J. O., & Keppens, R.. Wind Roche lobe overflow in high mass X-ray binaries - A possible mass transfer mechanism for Ultraluminous X-ray sources. submitted, arXiv : 1810.12937Google Scholar
Feldmeier, A., Kudritzki, R.-P., Palsa, R., Pauldrach, A. W. A., & Puls, J.. The X-ray emission from shock cooling zones in O star winds. Astron. Astrophys., 320:899912, 1997.Google Scholar
Fürst, F., Kreykenbohm, I., Pottschmidt, K., Wilms, J., Hanke, M., Rothschild, R. E., Kretschmar, P., Schulz, N. S., Huenemoerder, D. P., Klochkov, D. & Staubert, R. X-ray variation statistics and wind clumping in Vela X-1 Astron. Astrophys., 519, 2010.CrossRefGoogle Scholar
Gimenez-Garcia, A., Shenar, T., Torrejon, J. M., Oskinova, L., Martinez-Nunez, S., Hamann, W.-R., Rodes-Roca, J. J., Gonzalez-Galan, A., Alonso-Santiago, J., Gonzalez-Fernandez, C., Bernabeu, G., & Sander, A.. Measuring the stellar wind parameters in IGR J17544-2619 and Vela X-1 constrains the accretion physics in Supergiant Fast X-ray Transient and classical Supergiant X-ray Binaries. Astron. Astrophys., 591(A26):25, mar 2016.CrossRefGoogle Scholar
Grinberg, V., Hell, N., El Mellah, I., Neilsen, J., Sander, A. A. C., Leutenegger, M., Fürst, F., Huenemoerder, D. P., Kretschmar, P., Kühnel, M., Martínez-Núñez, S., Niu, S., Pottschmidt, K., Schulz, N. S., Wilms, J., & Nowak, M. A.. The clumpy absorber in the high-mass X-ray binary Vela X-1. Astron. Astrophys. Vol. 608, id.A143, 18 pp., 608, nov 2017.CrossRefGoogle Scholar
Hatchett, S. & McCray, R.. X-ray sources in stellar winds. Astrophys. J., 211:552, jan 1977.CrossRefGoogle Scholar
Hoyle, F. & Lyttleton, R. A.. The effect of interstellar matter on climatic variation. Math. Proc. Cambridge Philos. Soc., 35(03):405415, oct 1939.CrossRefGoogle Scholar
Karino, Shigeyuki. Bimodality of Wind-fed Accretion in High Mass X-ray Binaries. Publ. Astron. Soc. Japan, 66(2):23, mar 2014.CrossRefGoogle Scholar
Krticka, Jiri, & Kubat, Jiri. Influence of X-ray radiation on the hot star wind ionization state and on the radiative force. Adv. Sp. Res., 58(5):710718, feb 2016.CrossRefGoogle Scholar
Lucy, L. B. & Solomon, P. M.. Mass Loss by Hot Stars. Astrophys. J., 159:879, mar 1970.CrossRefGoogle Scholar
Manousakis, A. & Walter, R.. The stellar wind velocity field of HD 77581. Astron. Astrophys. Vol. 584, id.A25, 5 pp., 584, jul 2015.CrossRefGoogle Scholar
Mohamed, S. & Podsiadlowski, Philipp. Wind Roche-Lobe Overflow: a New Mass-Transfer Mode for Wide Binaries, 2007, ASPC, 372, 397.Google Scholar
Owocki, S. P. & Rybicki, G. B.. Instabilities in line-driven stellar winds. I - Dependence on perturbation wavelength. Astrophys. J., 284:337, sep 1984.CrossRefGoogle Scholar
Andreas, A. C. Sander, Fürst, Felix, Peter Kretschmar, Lidia M. Oskinova, Helge Todt, Hainich, Rainer, Shenar, Tomer & Hamann, Wolf-Rainer. Coupling hydrodynamics with comoving frame radiative transfer: II. Stellar wind stratification in the high-mass X-ray binary Vela X-1. Astron. Astrophys., 610:A60, feb 2017.Google Scholar
Ian, R. Stevens. X-ray-illuminated stellar winds - Optically thick wind models for massive X-ray binaries. Astrophys. J., 379:310, sep 1991.Google Scholar
Sundqvist, J. O., Owocki, S. P., & Puls, J.. 2D wind clumping in hot, massive stars from hydrodynamical line-driven instability simulations using a pseudo-planar approach. Astron. Astrophys. Vol. 611, id.A17, 10 pp., 611, oct 2017.CrossRefGoogle Scholar
Walter, Roland, Lutovinov, Alexander A., Bozzo, Enrico and Tsygankov, , & Sergey, S. High-Mass X-ray Binaries in the Milky Way: A closer look with INTEGRAL. Astron. Astrophys. Rev., 23, 2015 CrossRefGoogle Scholar
Xia, C., Teunissen, J., El Mellah, I., Chané, E., & Keppens, R.. MPI-AMRVAC 2.0 for Solar and Astrophysical Applications. Astrophys. J. Suppl. Ser., 234(2):30, oct 2018.CrossRefGoogle Scholar