Published online by Cambridge University Press: 08 August 2017
A consensus has grown in the past few decades that binarity is key to understanding the morphological diversities of the circumstellar envelopes (CSEs) surrounding stars in the Asymptotic Giant Branch (AGB) to Planetary Nebula (PN) phase. The possible roles of binaries in their shaping have, however, yet to be confirmed. Meanwhile, recurrent patterns are often found in the CSEs of AGB stars and the outer halos of PNe, providing a fossil record of the mass loss during the AGB phase. In this regard, recent molecular line observations using interferometric facilities have revealed the spatio-kinematics of such patterns. Numerical simulations of binary interactions producing spiral-shells have been extensively developed, revealing new probes for extracting the stellar and orbital properties from these patterns. I review recent theoretical and observational investigations on the circumstellar spiral-shell patterns and discuss their implications in linking binary properties to the asymmetric ejection events in the post-AGB phase.