Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-27T23:58:15.407Z Has data issue: false hasContentIssue false

Chemistry of the oldest white dwarf planetary systems

Published online by Cambridge University Press:  04 September 2018

Mark A. Hollands
Affiliation:
Department of Physics, University of Warwick, Coventry CV4 7AL, UK email: [email protected]
Boris T. Gänsicke
Affiliation:
Department of Physics, University of Warwick, Coventry CV4 7AL, UK email: [email protected]
Detlev Koester
Affiliation:
Institut für Theoretische Physik and Astrophysik, University of Kiel, 24098 Kiel, Germany
Vadim Alekseev
Affiliation:
St. Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia
Emma L. Herbert
Affiliation:
Department of Physics, University of Warwick, Coventry CV4 7AL, UK email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Almost all stars in the Milky Way, including the Sun, will end their lives as white dwarfs. Their relatively peaceful transition off of the main sequence implies that most of their planetary systems will survive engulfment during the deaths of their host stars. These remnant planetary systems remain detectable for many Gyr through the occasional metal-contamination of the white dwarf photospheres by tidally disrupted planetesimals. Spectral analysis of these “metal-polluted” white dwarfs therefore provides a direct method for measuring the chemical compositions of extrasolar material. Here we present our sample of 230 cool white dwarfs with metal-rich photospheres, explore the diverse range of compositions of the accreted matter, and discuss two extreme systems which have respectively accreted planetesimals consistent with crust-like and core-like planetary material.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Carry, B., 2012, Planet. Space Sci., 73, 98Google Scholar
Debes, J. H. & Sigurdsson, S., 2002, ApJ, 572, 556Google Scholar
Farihi, J., 2016, New Astron. Rev., 71, 9Google Scholar
Farihi, J., Gänsicke, B. T., & Koester, D., 2013, Science, 342, 218Google Scholar
Gänsicke, B. T., Aungwerojwit, A., Marsh, T. R., Dhillon, V. S., Sahman, D. I., Veras, D., Farihi, J., Chote, P., Ashley, R., Arjyotha, S., Rattanasoon, S., Littlefair, S. P., Pollacco, D., & Burleigh, M. R., 2016, ApJ, 818, L7Google Scholar
Gänsicke, B. T., Koester, D., Farihi, J., Girven, J., Parsons, S. G., & Breedt, E., 2012, MNRAS, 424, 333Google Scholar
Girven, J., Brinkworth, C. S., Farihi, J., Gänsicke, B. T., Hoard, D. W., Marsh, T. R., & Koester, D., 2012, ApJ, 749, 154Google Scholar
Graham, J. R., Matthews, K., Neugebauer, G., & Soifer, B. T., 1990, ApJ, 357, 216Google Scholar
Hollands, M. A., Koester, D., Alekseev, V., Herbert, E. L., & Gänsicke, B. T., 2017, MNRAS, 467, 4970Google Scholar
Jura, M., 2003, ApJ Lett., 584, L91Google Scholar
Jura, M., Farihi, J., Zuckerman, B., & Becklin, E. E., 2007, AJ, 133, 1927Google Scholar
Jura, M. & Young, E. D., 2014, Annual Review of Earth and Planetary Sciences, 42, 45Google Scholar
Kawka, A. & Vennes, S., 2014, MNRAS, 439, L90Google Scholar
Koester, D., 2009, A&A, 498, 517Google Scholar
Koester, D., Gänsicke, B. T., & Farihi, J., 2014, A&A, 566, A34Google Scholar
Koester, D., Girven, J., Gänsicke, B. T., & Dufour, P., 2011, A&A, 530, A114Google Scholar
Koester, D., Provencal, J., & Shipman, H. L., 1997, A&A, 320, L57Google Scholar
McDonough, W. 2000, Earthquake Thermodynamics and Phase Transformation in the Earth’s Interior, Elsevier Science Academic Press, pages 524Google Scholar
Paquette, C., Pelletier, C., Fontaine, G., & Michaud, G. 1986, 61, 197Google Scholar
Raddi, R., Gänsicke, B. T., Koester, D., Farihi, J., Hermes, J. J., Scaringi, S., Breedt, E., & Girven, J., 2015, MNRAS, 450, 2083Google Scholar
Reach, W. T., Kuchner, M. J., von Hippel, T., Burrows, A., Mullally, F., Kilic, M., & Winget, D. E., 2005, ApJ Lett., 635, L161Google Scholar
Reach, W. T., Lisse, C., von Hippel, T., & Mullally, F., 2009, ApJ, 693, 697Google Scholar
Rocchetto, M., Farihi, J., Gänsicke, B. T., & Bergfors, C., 2015, MNRAS, 449, 574Google Scholar
van Maanen, A., 1917, PASP, 29, 258Google Scholar
Vanderburg, A., Johnson, J. A., Rappaport, S., Bieryla, A., Irwin, J., Lewis, J. A., Kipping, D., Brown, W. R., Dufour, P., Ciardi, D. R., Angus, R., Schaefer, L., Latham, D. W., Charbonneau, D., Beichman, C., Eastman, J., McCrady, N., Wittenmyer, R. A., & Wright, J. T., 2015, Nat, 526, 546Google Scholar
Veras, D., 2016, Royal Society Open Science, 3, 150571Google Scholar
Wilson, D. J., Gänsicke, B. T., Koester, D., Toloza, O., Pala, A. F., Breedt, E., & Parsons, S. G., 2015, MNRAS, 451, 3237Google Scholar
Xu, S., Jura, M., Koester, D., Klein, B., & Zuckerman, B., 2014, ApJ, 783, 79Google Scholar
Xu, S., Zuckerman, B., Dufour, P., Young, E. D., Klein, B., & Jura, M., 2017, ApJ Lett., 836, L7Google Scholar
Zuckerman, B. & Becklin, E. E., 1987, Nat, 330, 138Google Scholar
Zuckerman, B., Koester, D., Dufour, P., Melis, C., Klein, B., & Jura, M., 2011, ApJ, 739, 101Google Scholar
Zuckerman, B., Melis, C., Klein, B., Koester, D., & Jura, M., 2010, ApJ, 722, 725Google Scholar