Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T02:39:15.288Z Has data issue: false hasContentIssue false

Chemistry and binarity in the early Universe: what is the role of metal-poor AGB stars?

Published online by Cambridge University Press:  30 December 2019

Anke Arentsen
Affiliation:
Leibniz-Institut für Astrophysik Potsdam (AIP), Potsdam, Germany email: [email protected]
Else Starkenburg
Affiliation:
Leibniz-Institut für Astrophysik Potsdam (AIP), Potsdam, Germany email: [email protected]
Matthew D. Shetrone
Affiliation:
McDonald Observatory, The University of Texas at Austin, Austin, USA
Alan W. McConnachie
Affiliation:
NRC Herzberg Institute of Astrophysics, Victoria, Canada
Kim A. Venn
Affiliation:
Department of Physics and Astronomy, University of Victoria, Victoria, Canada
Éric Depagne
Affiliation:
Southern African Large Telescope/SAAO, Cape Town, South Africa
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Carbon-enhanced metal-poor stars are probes of the early universe, that teach us about metal-poor AGB stars and supernovae physics in the very first stars. We find a large fraction of CEMP-no stars with large absolute carbon abundance to be in binary systems. This may be an indication of binary interaction with ultra or extremely metal-poor AGB stars, curiously without enhancement in s-process elements.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Arentsen, A., Starkenburg, E., Shetrone, M. D., et al. submittedGoogle Scholar
Chiaki, G., Tominaga, N., Nozawa, T. 2017, MNRAS, 472, 115 10.1093/mnrasl/slx163CrossRefGoogle Scholar
Cruz, M. A., Serenelli, A., Weiss, A. 2013, A&A, 559, 4 Google Scholar
Hansen, T. T., Andersen, J., Nordström, B., et al. 2016a, A&A, 586, A3 Google Scholar
Hansen, T. T., Andersen, J., Nordström, B., et al. 2016b, A&A, 586, A160 Google Scholar
Lau, H. H. B., Stancliffe, R. J., Tout, C. A. 2007, MNRAS, 378, 563 10.1111/j.1365-2966.2007.11773.xCrossRefGoogle Scholar
Lee, Y. S., Beers, T. C., Masseron, T., et al. 2013, AJ, 146, 132 10.1088/0004-6256/146/5/132CrossRefGoogle Scholar
Sharma, M., Theuns, T., Frenk, C. 2018, arXiv:1805.05342Google Scholar
Starkenburg, E., Shetrone, M.D., McConnachie, A.W., & Venn, K.A. 2014, MNRAS, 441, 1217 10.1093/mnras/stu623CrossRefGoogle Scholar
Suda, T., Aikawa, M., Machida, M. N., Fujimoto, M. Y., Iben, I. 2004, ApJ, 611, 476 10.1086/422135CrossRefGoogle Scholar
Yoon, J., Beers, T. C., Placco, V. M., et al. 2016, ApJ, 833, 20 10.3847/0004-637X/833/1/20CrossRefGoogle Scholar
Price-Whelan, A. M., Hogg, D.W., Foreman-Mackey, D., Rix, H.-W. 2017, ApJ, 837, 20 10.3847/1538-4357/aa5e50CrossRefGoogle Scholar