Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T15:03:31.622Z Has data issue: false hasContentIssue false

Chemical History of Molecules in Circumstellar Disks

Published online by Cambridge University Press:  21 December 2011

Ruud Visser
Affiliation:
Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042, USA email: [email protected] Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, the Netherlands
Ewine F. van Dishoeck
Affiliation:
Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, the Netherlands Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching, Germany
Steven D. Doty
Affiliation:
Department of Physics and Astronomy, Denison University, Granville, OH 43023, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The chemical composition of a protoplanetary disk is determined not only by in situ chemical processes during the disk phase, but also by the history of the gas and dust before it accreted from the natal envelope. In order to understand the disk's chemical composition at the time of planet formation, especially in the midplane, one has to go back in time and retrace the chemistry to the molecular cloud that collapsed to form the disk and the central star. Here we present a new astrochemical model that aims to do just that. The model follows the core collapse and disk formation in two dimensions, which turns out to be a critical upgrade over older collapse models. We predict chemical stratification in the disk due to different physical conditions encountered along different streamlines. We argue that the disk-envelope accretion shock does not play a significant role for the material in the disk at the end of the collapse phase. Finally, our model suggests that complex organic species are formed on the grain surfaces at temperatures of 20 to 40 K, rather than in the gas phase in the T > 100 K hot corino.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Adams, F. C. & Shu, F. H. 1986, ApJ, 308, 836CrossRefGoogle Scholar
Aikawa, Y., Wakelam, V., Garrod, R. T., & Herbst, E. 2008, ApJ, 674, 984CrossRefGoogle Scholar
Bergin, E. A. & Langer, W. D. 1997, ApJ, 486, 316CrossRefGoogle Scholar
Black, J. H. & van Dishoeck, E. F. 1987, ApJ, 322, 412CrossRefGoogle Scholar
Brinch, C., Hogerheijde, M. R., & Richling, S. 2008, A&A, 489, 607Google Scholar
Bruderer, S., Doty, S. D., & Benz, A. O. 2009, ApJS, 183, 179CrossRefGoogle Scholar
Cantó, J., Raga, A. C., & Williams, D. A. 2008, Rev. Mex. Astron. Astr., 44, 293Google Scholar
Cassen, P. & Moosman, A. 1981, Icarus, 48, 353CrossRefGoogle Scholar
Ceccarelli, C. 2004, in ASP Conf. Ser. 323: Star Formation in the Interstellar Medium: In Honor of David Hollenbach, ed. Johnstone, D., Adams, F.C., Lin, D.N.C., Neufeld, D.A., & Ostriker, E.C. (San Francisco: ASP), 195Google Scholar
di Francesco, J., Evans, N. J. II, & Caselli, , et al. 2007, Protostars & Planets V, 17Google Scholar
Dullemond, C. P. & Dominik, C. 2004, A&A, 417, 159Google Scholar
Dullemond, C. P., Apai, D., & Walch, S. 2006, ApJ, 640, L67CrossRefGoogle Scholar
Fuchs, G. W., Cuppen, H. M., & Ioppolo, S., et al. 2009, A&A, 505, 629Google Scholar
Garrod, R. T. & Herbst, E. 2006, A&A, 457, 927Google Scholar
Garrod, R. T., Weaver, S. L. W.., & Herbst, E. 2008, ApJ, 682, 283CrossRefGoogle Scholar
Herbst, E. & van Dishoeck, E. F. 2009, ARA&A, 47, 427Google Scholar
Hollenbach, D., Kaufman, M. J., Bergin, E. A., & Melnick, G. J. 2009, ApJ, 690, 1497CrossRefGoogle Scholar
Ioppolo, S., Cuppen, H. M., Romanzin, C., van Dishoeck, E. F., & Linnartz, H. 2008, ApJ, 686, 1474CrossRefGoogle Scholar
Jonkheid, B., Faas, F. G. A., van Zadelhoff, G.-J. & van Dishoeck, E. F. 2004, A&A, 428, 511Google Scholar
Kamp, I. & Dullemond, C. P. 2004, ApJ, 615, 991CrossRefGoogle Scholar
Lee, J.-E., Bergin, E. A., & Evans, N. J. II 2004, ApJ, 617, 360CrossRefGoogle Scholar
Lynden-Bell, D. & Pringle, J. E. 1974, MNRAS, 168, 603CrossRefGoogle Scholar
Neufeld, D. A. & Hollenbach, D. J. 1994, ApJ, 428, 170CrossRefGoogle Scholar
Rodgers, S. D. & Charnley, S. B. 2003, ApJ, 585, 355CrossRefGoogle Scholar
Schöier, F. L., Jørgensen, J. K., van Dishoeck, E. F., & Blake, G. A. 2002, A&A, 390, 1001Google Scholar
Semenov, D., Wiebe, D., & Henning, T. 2006, ApJ, 647, L57CrossRefGoogle Scholar
Shu, F. H. 1977, ApJ, 214, 488CrossRefGoogle Scholar
Terebey, S., Shu, F. H., & Cassen, P. 1984, ApJ, 286, 529CrossRefGoogle Scholar
van Weeren, R. J., Brinch, C., & Hogerheijde, M. R. 2009, A&A, 497, 773Google Scholar
Velusamy, T. & Langer, W. D. 1998, Nature, 392, 685CrossRefGoogle Scholar
Visser, R., van Dishoeck, E. F., Doty, S. D., & Dullemond, C. P. 2009a, A&A, 495, 881Google Scholar
Visser, R., van Dishoeck, E. F., & Black, J. H. 2009b, A&A, 503, 323Google Scholar
Visser, R. & Dullemond, C. P. 2010, A&A, 519, A28Google Scholar
Visser, R., Doty, S. D., & van Dishoeck, E. F. 2011, A&A, submittedGoogle Scholar
Woodall, J., Agúndez, M., Markwick-Kemper, A. J., & Millar, T. J. 2007, A&A, 466, 1197Google Scholar
Young, C. H. & Evans, N. J. II 2005, ApJ, 627, 293CrossRefGoogle Scholar