Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T16:59:58.507Z Has data issue: false hasContentIssue false

The chemical fingerprints of the thin and the thick disk

Published online by Cambridge University Press:  01 June 2008

Sofia Feltzing
Affiliation:
Lund Observatory, Box 43, SE-221 00 Lund, Sweden email: [email protected]
Sally Oey
Affiliation:
University of Michigan830 Dennison Building, Ann Arbor, MI, USA 48109-1042, USA
Thomas Bensby
Affiliation:
European Southern ObservatoryAlonso de Cordova 3107, Vitacura, Casilla 19001, Santiago 19, Chile email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The past history and origin of the different Galactic stellar populations are manifested in their different chemical abundance patterns. We obtained new elemental abundances for 553 F and G dwarf stars, to more accurately quantify these patterns for the thin and thick disks. However, the exact definition of disk membership is not straightforward. Stars that have a high likelihood of belonging to the thin disk show different abundance patterns from those for the thick disk. In contrast, we show that stars for the Hercules Stream do not show unique abundance patterns, but rather follow those of the thin and thick disks. This strongly suggests that the Hercules Stream is a feature induced by internal dynamics within the Galaxy rather than the remnant of an accreted satellite.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Árnadóttir, A., Feltzing, S., & Lundström, I 2008, arXiv:0807.1665Google Scholar
Bensby, T., Feltzing, S., & Lundström, I. 2003, A&A, 410, 527Google Scholar
Bensby, T., Feltzing, S., & Lundström, I. 2004, A&A, 415, 155Google Scholar
Bensby, T., Oey, M. S., Feltzing, S. & Gustafsson, B. 2007a, ApJL, 655, 89CrossRefGoogle Scholar
Bensby, T., Zenn, A. R., Oey, M. S., & Feltzing, S. 2007b, ApJL, 663, 13CrossRefGoogle Scholar
Dehnen, W. 2000, AJ, 119, 800CrossRefGoogle Scholar
De Silva, G. M., Freeman, K. C., Asplund, M., Bland-Hawthorn, J., Bessel, M. S., & Collet, R. 2007, AJ, 133, 1161CrossRefGoogle Scholar
Famaey, B., Jorissen, A., Luri, X., Mayor, M., Udry, S., Dejonghe, H., & Turon, C. 2005, A&A, 430, 165Google Scholar
Freeman, K. & Bland-Hawthorn, J. 2002, ARA&A, 40, 487Google Scholar
Fuhrmann, K. 2008, MNRAS, 384, 173CrossRefGoogle Scholar
Gilmore, G. & Reid, N. 1983, MNRAS, 202, 1025CrossRefGoogle Scholar
Gratton, R. G., Carretta, E., Desidera, S., Lucatello, S., Mazzei, P., & Barbieri, M. 2003, A&A, 406, 131Google Scholar
Nordström, B., Mayor, M., Andersen, J., Holmberg, J., Pont, F., Jørgensen, B. R., Olsen, E. H., Udry, S., & Mowlavi, N. 2004, A&A, 418, 989Google Scholar
Reddy, B. E., Lambert, D. L., & Allende Prieto, C. 2006, MNRAS, 367, 1329CrossRefGoogle Scholar
Reddy, B. E., Tomkin, J., Lambert, D. L., & Allende Prieto, C. 2003, MNRAS, 340, 304Google Scholar
Soubiran, C. & Girard, P. 2005, A&A, 438, 139Google Scholar