Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-27T23:07:52.107Z Has data issue: false hasContentIssue false

Chemical dynamics in interstellar ice

Published online by Cambridge University Press:  12 October 2020

Patrice Theulé*
Affiliation:
Laboratoire d’Astrophysique de Marseille Aix-Marseille University, CNRS, CNES, Marseille, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Chemistry in the interstellar medium is generally out-of-equilibrium and as such is kinetically controlled by a set of time-dependent equations, both for gas-phase chemistry and solid-state chemistry. The competition between the different possible reactions will determine toward which complex molecules the chemical network is driven to. The formation of complex molecules on the surface of the grains or in the ice mantle covering them is set by the diffusion-reaction equation, which is depending on temperature dependent reaction rate constants and diffusion coefficients. This paper shows how these two parameters can be experimentally determined by laboratory experiments. It also shows how the ice mantle reorganization plays an important role in the trapping and reactivity, which leads to the formation of complex organic molecules.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Bacmann, A., Taquet, V., Faure, A., Kahane, C., & Ceccarelli, C. 2012, A&A, 541, L12 Google Scholar
Borget, F., Müller, S., Grote, D., P. Theulé; Vinogradoff, V., Chiavassa, T., Sander, W., et al. 2017, A&A, 598, A22 Google Scholar
Bossa, J. B., Theule, P., Duvernay, F., & Chiavassa, T. 2009, ApJ, 707, 1524 CrossRefGoogle Scholar
Caselli, P. & Ceccarelli, C. 2012, A&A Rev., 20, 56 Google Scholar
Collings, M. P., Anderson, M. A., Chen, R., Dever, J. W., Viti, S., Williams, D. A., McCoustra, M. R. S. et al. 2004, MNRAS, 354, 1133 CrossRefGoogle Scholar
Cooke, I. R., Öberg, K. I., Fayolle, E. C., Peeler, Z., & Bergner, J. B. 2018, ApJ, 852, 75 CrossRefGoogle Scholar
Ehrenfreund, P. & Charnley, S. B. 2000, ARA&A, 38, 427 CrossRefGoogle Scholar
Goesmann, F., Rosenbauer, H., Bredehöft, J. H., et al. 2015, Science, 349, 6247 CrossRefGoogle Scholar
Gudipati, M. S., Abou Mrad, N., Blum, J., et al. 2015, Space Science Reviews, 197, 101 CrossRefGoogle Scholar
Ghesquière, P., Mineva, T., Talbi, D., et al. 2015, PCCP, 17, 11455 CrossRefGoogle Scholar
Ghesquière, P., Noble, J. A., Ivlev, A., & Theulé, P. 2018, A&A, 614, A107 Google Scholar
He, J., Emtiaz, S. M., & Vidali, G. 2018, ApJ, 863, 156 CrossRefGoogle Scholar
Karssemeijer, L. J., Ioppolo, S., van Hemert, M. C., van der Avoird, A., Allodi, M. A., Blake, G. A., & Cuppen, H. M. 2014, ApJ, 781, A16 CrossRefGoogle Scholar
Livingston, F. E., Smith, J. A., & George, S. M. 2002, J. Phys. Chem. A, 106, 6309 CrossRefGoogle Scholar
May, R. A., Smith, R. S., Kay, B. D. et al. 2013, J. Chem. Phys., 138, 104501 CrossRefGoogle Scholar
Mispelaer, F., Theulé, P., Aouididi, H., et al. 2013, A&A, 555, A13 Google Scholar
Noble, J. A., Theule, P., Duvernay, F., et al. 2014, PCCP, 16, 23604 CrossRefGoogle Scholar
Oba, Y., Watanabe, N., Hama, T., Kuwahata, K., Hidaka, H., Kouchi, A., et al. 2012, ApJ, 749, 67 CrossRefGoogle Scholar
Potapov, A., Theulé, P., Jäger, C. & Henning, T. 2019, ApJL, 878, L20 CrossRefGoogle Scholar
Smith, R. S., Huang, C., Wong, E. K. L., Kay, B. D. 1997, Phys. Rev. Lett., 79, 909 CrossRefGoogle Scholar
Theulé, P., Duvernay, F., Danger, G., et al. 2013, Advances in Space Research, 52, 1567 CrossRefGoogle Scholar
Theulé, P., Noble, J., Guesquiere, P. 2018, Laboratory Astrophysics, Astrophysics and Space Science Library, 451Google Scholar
Viti, S., Collings, M. P., Dever, J. W., McCoustra, M. R. S., Williams, D. A., 2004, MNRAS, 354, 1141 CrossRefGoogle Scholar