Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T20:59:09.994Z Has data issue: false hasContentIssue false

Chemical diversity in the comet population

Published online by Cambridge University Press:  27 October 2016

Nicolas Biver
Affiliation:
LESIA, Observatoire de Paris, CNRS, PSL Research University, UPMC, Université Paris-Diderot, 5 place Jules Janssen, F-92195 Meudon, France email: [email protected]
Dominique Bockelée-Morvan
Affiliation:
LESIA, Observatoire de Paris, CNRS, PSL Research University, UPMC, Université Paris-Diderot, 5 place Jules Janssen, F-92195 Meudon, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For the last 3 decades, infrared and microwave techniques have enabled the detection of up to 27 parent molecules in the coma of comets. Several molecules have been detected in over 40 different comets. A large diversity of composition is seen in the sample, comprising comets of various dynamical origins. Abundances relative to water for the molecules can vary by a factor 3 to more than 10. The taxonomic study of a sample of comets in which the abundance of several molecules (e.g., HCN, CH3OH, CO, CH4, C2H6, H2S, H2CO, CH3CN, CS, . . .) has been measured does not show any clear grouping. Except for fragments of a common parent comet, every observed comet shows a different composition. The absence of any clear correlation between the volatile content of the comets and their dynamical origin (Kuiper Belt versus Oort Cloud) is consistent with a common origin for these two populations. Their diversity in composition may also suggest that radial and temporal mixing in the early proto-planetary nebula may have played an important role.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

A'Hearn, M. F., Millis, R. L., Schleicher, D. G., Osip, D. J., & Birch, P. V. 1995, Icarus 118 223270 Google Scholar
Agúndez, M., Biver, N., Santos-Sanz, P., Bockelée-Morvan, D., & Moreno, R. 2014, Astron. Astrophys., 564, L2 Google Scholar
Biver, N., Bockelée-Morvan, D., Crovisier, J., et al. 1999, Astron. J., 118, 1850 Google Scholar
Biver, N., Bockelée-Morvan, D., Crovisier, J., et al. 2000, Astron. J., 120, 1554 Google Scholar
Biver, N., Bockelée-Morvan, D., Crovisier, J., et al. 2006, Astron. Astrophys., 449, 1255 Google Scholar
Biver, N., Bockelée-Morvan, D., Boissier, J., et al. 2009, Icarus 187 253–271 Google Scholar
Biver, N., Bockelée-Morvan, D., Colom, P., et al. 2011, Astron. Astrophys., 528, A142 CrossRefGoogle Scholar
Biver, N., Crovisier, J., Bockelée-Morvan, D., et al., 2012, Astron. Astrophys., 539, A68 CrossRefGoogle Scholar
Biver, N., Bockelée-Morvan, D., Crovisier, J., et al. 2014, Astron. Astrophys., 566, L5 Google Scholar
Biver, N., Bockelée-Morvan, D., Moreno, R., et al. 2015, Science Advances, 23 october 2015Google Scholar
Bockelée-Morvan, D., Crovisier, J., Mumma, M. J., & Weaver, H. A. 2005, Comets II, ed. Festou, M. C., Keller, H. U., & Weaver, H. A. (Tucson, AZ: Univ. Arizona Press), 391423 Google Scholar
Bockelé-Morvan, D., Hartogh, P., Crovisier, J., et al. 2010, Astron. Astrophys., 518, L49 Google Scholar
Brasser, R. & Morbidelli, A. 2013, Icarus 225 40–49 Google Scholar
Cochran, A. L., Levasseur-Regourd, A.-C., Cordiner, M., et al. 2015, Space Science Reviews Google Scholar
Cordiner, M. A., Remijan, A. J., Boissier, J. et al. 2014, Astrophy. J. Lett., 792, L2 Google Scholar
Crovisier, J., Biver, N., Bockelée-Morvan, D., & Colom, P. 2009, Planet. Space Sci. 57 1162–1174 Google Scholar
Crovisier, J., Biver, N., Bockelée-Morvan, D., et al. 2009, Earth, Moon, and Planets 105 267–272 Google Scholar
Dello Russo, N., Mumma, M. J., DiSanti, M. A., et al. 2006, Icarus 184 255–276 Google Scholar
Dello Russo, N., Vervack, R. J. Jr., Weaver, H. A., et al. 2007, Nature 448 172–175 Google Scholar
Dello Russo, N., Vervack, R. J., Weaver, H. A., et al. 2008, Astrophys. J. 680 793–802 Google Scholar
Dello Russo, N., Vervack, R. J., Weaver, H. A., et al. 2009, Astrophys. J. 703 187–197 Google Scholar
Dello Russo, N., Vervack, R. J., Lisse, C. M., et al. 2011, Astrophys. J. Lett., 734, L8 Google Scholar
DiSanti, M. A., Villanueva, G. L., Milam, S. N. et al. 2009, Icarus 203 589–598 Google Scholar
DiSanti, M. A., Bonev, B. P., Villanueva, G. L., & Mumma, M. J. 2013, Astrophy. J., 763, A1 Google Scholar
Feaga, Lori M.; A'Hearn, Michael F.; Farnham, Tony L.; Astron. J., 147, A24 Google Scholar
Gibb, E. L., Bonev, B. P., Villanueva, G. L., et al. 2012, Astrophys. J., 750, A102 Google Scholar
Hartogh, P., Lis, D. C., Bockelée-Morvan, D., et al. 2011, Nature, 478, 218 Google Scholar
Kawakita, H., Kobayashi, H., Dello Russo, N., et al. 2013, Icarus 222 723–733 Google Scholar
Kawakita, H., Dello Russo, N., Vervack, R. Jr., et al. 2014, Astrophys. J., 788, A110 Google Scholar
Kobayashi, H., Bockelée-Morvan, D., Kawakita, H., et al. 2010, Astron. Astrophys., 509, A80 Google Scholar
Lis, D. C., Bockelée-Morvan, D., Boissier, J., et al. 2008, Astrophy. J. 675 931–936 Google Scholar
Mumma, M. J., DiSanti, M. A., Dello Russo, N., et al. 2003, Adv. Space Res. 31 2563–2575 Google Scholar
Ootsubo, T., Kawakita, H., Hamada, S. et al. 2012, Astrophy. J., 752, A15 Google Scholar
Paganini, L., Mumma, M. J., Bonev, B. P. et al. 2012, Icarus 218 644–653 Google Scholar
Paganini, L., Mumma, M. J., Villanueva, G. L. et al. 2012, Astrophy. J. Lett., 748, L13 Google Scholar
Paganini, L., DiSanti, M. A., Mumma, M. J. et al. 2014, Astron. J., 147, A15 Google Scholar
Paganini, L., Mumma, M. J., Villanueva, G. L. et al. 2014, Astrophy. J., 791, A122 Google Scholar
Radeva, Y. L., Mumma, M. J., Bonev, B. P., et al. 2010, Icarus 206 764–777 Google Scholar
Radeva, Y. L., Mumma, M. J., Villanueva, G. L., et al. 2013, Icarus 223 298–307 Google Scholar
Villanueva, G. L., Mumma, M. J., DiSanti, M. A., et al. 2011, Icarus 216 227–240 Google Scholar