Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T06:07:41.769Z Has data issue: false hasContentIssue false

Chemical changes during transport from cloud to disk

Published online by Cambridge University Press:  01 February 2008

Ruud Visser
Affiliation:
Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, the Netherlands email: [email protected]
Ewine F. van Dishoeck
Affiliation:
Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, the Netherlands email: [email protected] Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching, Germany
Steven D. Doty
Affiliation:
Department of Physics and Astronomy, Denison University, Olin Hall, Granville, OH 43023, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present the first semi-analytical model that follows the chemical evolution during the collapse of a molecular cloud and the formation of a low-mass star and the surrounding disk. It computes infall trajectories from any starting point in the cloud and it includes a full time-dependent treatment of the temperature structure. We focus here on the freeze-out and desorption of CO and H2O. Both species deplete towards the centre before the collapse begins. CO evaporates during the infall phase and re-adsorbs when it enters the disk. H2O remains in the solid phase everywhere, except within a few AU of the star. Material that ends up in the planet- and comet-forming zones is predicted to spend enough time in a warm zone during the collapse to form complex organic species.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Aikawa, Y., Wakelam, V., Garrod, R. T., & Herbst, E. 2008, ApJ, 674, 984CrossRefGoogle Scholar
Bockelée-Morvan, D., Crovisier, J., Mumma, M. J., & Weaver, H. A. 2004, in: Festou, M. C., Keller, H. U., & Weaver, H. A. (eds.), Comets II (Tucson: Univ. of Arizona Press), p. 391CrossRefGoogle Scholar
Cassen, P. & Moosman, A. 1981, Icarus, 48, 353CrossRefGoogle Scholar
Ceccarelli, C., Hollenbach, D. J., & Tielens, A. G. G. M. 1996, ApJ, 471, 400CrossRefGoogle Scholar
Collings, M. P., Anderson, M. A., Chen, R., et al. 2004, MNRAS, 354, 1133CrossRefGoogle Scholar
Dullemond, C. P., Apai, D, & Walch, S. 2006, ApJ (Letter), 640, L67CrossRefGoogle Scholar
Dullemond, C. P., & Dominik, C. 2004, A&A, 417, 159Google Scholar
Fraser, H. J., Collings, M. P., McCoustra, M. R. S., & Williams, D. A. 2001, MNRAS, 327, 1165CrossRefGoogle Scholar
Garrod, R. T., & Herbst, E. 2006, A&A, 457, 927Google Scholar
Lee, J.-E., Bergin, E. A., & Evans, N. J. II, 2004, ApJ, 617, 360CrossRefGoogle Scholar
Mumma, M. J. 2008, this volumeGoogle Scholar
Neufeld, D. A., & Hollenbach, D. J. 1994, ApJ, 428, 170CrossRefGoogle Scholar
Rodgers, S. D., & Charnley, S. B. 2003, ApJ, 585, 355CrossRefGoogle Scholar
Shu, F. H. 1977, ApJ, 214, 488CrossRefGoogle Scholar
Terebey, S., Shu, F. H., & Cassen, P. 1984, ApJ, 286, 529CrossRefGoogle Scholar
Viti, S., Collings, M. P., Dever, J. W., McCoustra, M. R. S., & Williams, D. A. 2004, MNRAS, 354, 1141CrossRefGoogle Scholar