Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T22:58:52.624Z Has data issue: false hasContentIssue false

Chemical Change in the Disk Forming Region of IRAS 16293–2422 Studied with ALMA

Published online by Cambridge University Press:  04 September 2018

Yoko Oya*
Affiliation:
Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have analyzed rotational spectral line emission of OCS, CH3OH, HCOOCH3, and H2CS observed toward the low-mass Class 0 protostar IRAS 16293–2422 (Source A and B) at a sub-arcsecond resolution with ALMA. Significant chemical differentiation is found at a 50 au scale. OCS is found to trace the infalling-rotating envelope, while COM distributions are concentrated around the inner part of the envelope. The kinematic structure in Source A is explained with a ballistic model, and the protostellar mass and the radius of the centrifugal barrier are evaluated to be ~0.75 M and ~50 au, respectively. This study has revealed that the centrifugal barrier plays a central role not only in the disk formation but also in the associated chemical evolution.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Bottinelli, S., Ceccarelli, C., Neri, R., et al. 2004a, ApJ, 617, L69Google Scholar
Bottinelli, S., Ceccarelli, C., Williams, J. P., &Lefloch, B., 2007, A&A, 463, 601Google Scholar
Cazaux, S., Tielens, A. G. G. M., Ceccarelli, C., et al. 2003, ApJ, 593, L51Google Scholar
Ceccarelli, C., 2004, Star Formation in the Interstellar Medium: In Honor of David Hollenbach, 323, 195Google Scholar
Favre, C., Jørgensen, J. K., Field, D., et al. 2014, ApJ, 790, 55Google Scholar
Jørgensen, J. K., Favre, C., Bisschop, S. E., et al. 2012, ApJ, 757, L4Google Scholar
Jørgensen, J. K., van der Wiel, M. H. D., Coutens, A., et al. 2016, A&A, 595, A117Google Scholar
Knude, J.&Hog, E., 1998, A&A, 338, 897Google Scholar
Kuan, Y.-J., Huang, H.-C., Charnley, S. B., et al. 2004, ApJ, 616, L27Google Scholar
Oya, Y., Sakai, N., Sakai, T., et al. 2014, ApJ, 795, 152Google Scholar
Oya, Y., Sakai, N., Lefloch, B., et al. 2015, ApJ, 812, 59Google Scholar
Oya, Y., Sakai, N., López-Sepulcre, A., et al. 2016, ApJ, 824, 88Google Scholar
Oya, Y., Sakai, N., López-Sepulcre, A., et al. 2017, ApJ, 837, 174Google Scholar
Pineda, J. E., Maury, A. J., Fuller, G. A., et al. 2012, A&A, 544, L7Google Scholar
Sakai, N., Sakai, T., Hirota, T., et al. 2014a, Nature, 507, 78Google Scholar
Sakai, N., Oya, Y., Sakai, T., et al. 2014b, ApJ, 791, L38Google Scholar
Sakai, N., Oya, Y., López-Sepulcre, A., et al. 2016, ApJ, 820, L34Google Scholar
Sakai, N.&Yamamoto, S., 2013, Chemical Reviews, 113, 8981Google Scholar
Schöier, F. L., Jørgensen, J. K., van Dishoeck, E. F., &Blake, G. A., 2002, A&A, 390, 1001Google Scholar
van der Tak, F. F. S., Black, J. H., Schöier, F. L., Jansen, D. J., &van Dishoeck, E. F., 2007, A&A, 468, 627Google Scholar