Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-27T17:41:54.407Z Has data issue: false hasContentIssue false

Chemical and physical properties of interstellar dust

Published online by Cambridge University Press:  17 August 2012

A. G. G. M. Tielens*
Affiliation:
Leiden Observatory, Leiden University, PO Box 9513, NL-2300 RA Leiden, the Netherlands email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The characteristics of interstellar dust reflect a complex interplay between stellar injection of stardust, destruction in the ISM, and regrowth in clouds. Astronomical observations and analysis of stardust isolated from meteorites have revealed a highly diverse interstellar and circumstellar grain inventory, including both amorphous materials and highly crystalline compounds (silicates and carbon). This review summarizes this dust budget and inventory. Interstellar dust is highly processed during its sojourn from its birthsite (stellar ejecta) to its incorporation into protoplanetary systems. Processing by strong shocks due to supernova explosions is particularly important. Sputtering by impacting gas ions in shocks in the intercloud medium of the ISM is counteracted by accretion in cloud phases and their balance sets the observed, interstellar, elemental depletion patterns. Astronomical and meteoritical-stardust evidence for these processes is reviewed and it is concluded that dust formation in the ISM is very rapid. Not surprisingly, the characteristics of interstellar dust are expected to vary widely reflecting local stellar sources, the effects of SNe processing, and the interstellar accretion process.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Anders, E. & Zinner, E. 1993, Meteoritics, 28, 490CrossRefGoogle Scholar
Barlow, M. J., Krause, O., Swinyard, B. M., et al. 2010, A&A, 518, L138.Google Scholar
Barlow, M. J. 2009, Astrophysics in the Next Decade, (Berlin: Springer Verlag), 247CrossRefGoogle Scholar
Bernatowicz, T. J. et al. 2003, Geochim. Cosmochim. Acta, 67, 4679CrossRefGoogle Scholar
Berné, O. & Tielens, A. G. G. M. 2011, PNAS, in pressGoogle Scholar
Bertoldi, F., Carilli, C. L., Cox, P., et al. 2003, A&A, 406, L55.Google Scholar
Cartledge, S. I. B., Clayton, G. C., Gordon, K. D., et al. 2005, ApJ, 630, 355CrossRefGoogle Scholar
Cartledge, S. I. B., Lauroesch, J. T., Meyer, D. M., & Sofia, U. J. 2006, ApJ, 641, 327CrossRefGoogle Scholar
Cherchneff, I. & Dwek, E. 2010, ApJ, 713, 1CrossRefGoogle Scholar
Cherchneff, I. 2000, The Carbon Star Phenomenon, 177, 331Google Scholar
Ercolano, B., Barlow, M. J., & Sugerman, B. E. K. 2007, MNRAS, 375, 753CrossRefGoogle Scholar
Guillard, P., Jones, A. P., & Tielens, A. G. G. M. 2011, A&A, submittedGoogle Scholar
Hartmann, L. 1995, Revista Mexicana de Astronomia y Astrofisica Conference Series, 1, 285Google Scholar
Henkel, T., King, A., & Lyon, I. 2007, Lunar and Planetary Institute Science Conference Abstracts, 38, 2351Google Scholar
Jenkins, E. B. 2009, ApJ, 700, 1299CrossRefGoogle Scholar
Jones, A. P., Tielens, A. G. G. M., Hollenbach, D. J., & McKee, C. F. 1994, ApJ, 433, 797CrossRefGoogle Scholar
Jones, A. P., Tielens, A. G. G. M., & Hollenbach, D. J. 1996, ApJ, 469, 740CrossRefGoogle Scholar
Jura, M. 1987, in “Interstellar Processes”, ASSL, 134, p 3.Google Scholar
Kemper, F., Vriend, W. J., & Tielens, A. G. G. M. 2004, ApJ, 609, 826CrossRefGoogle Scholar
King, A. et al. 2010, Lunar and Planetary Institute Science Conference Abstracts, 41, 1976Google Scholar
Lewis, R. S., Amari, S., & Anders, E. 1994, GeCoA, 58, 471CrossRefGoogle Scholar
Lucy, L. B. et al. 1989, in “structure and dynamics of the interstellar medium”, eds. Tenorio-Tagle, G., Moles, M., Melnick, J. (Berlin: Springer Verlag), p 164CrossRefGoogle Scholar
Markwick-Kemper, F., Gallagher, S. C., Hines, D. C., & Bouwman, J. 2007, ApJ, 668, L107.CrossRefGoogle Scholar
Matsuura, M., et al. 2011, Science, 333, 6047Google Scholar
Meikle, W. P. S., Mattila, S., Pastorello, A., et al. 2007, ApJ, 665, 608CrossRefGoogle Scholar
Matsuura, M., Barlow, M. J., Zijlstra, A. A., et al. 2009, MNRAS, 396, 918CrossRefGoogle Scholar
Rho, J., Reach, W. T., Tappe, A., et al. 2009, ApJ, 700, 579CrossRefGoogle Scholar
Rho, J., Kozasa, T., Reach, W. T., et al. 2008, ApJ, 673, 271CrossRefGoogle Scholar
Sargent, B. A., Srinivasan, S., Meixner, M., et al. 2010, ApJ, 716.CrossRefGoogle Scholar
Savage, B. D. & Sembach, K. R. 1996, Ann Rev Astron Astrophys, 34, 279CrossRefGoogle Scholar
Sellgren, K., et al. 2010, ApJ, 722, L54.CrossRefGoogle Scholar
Shu, F. H. & Shang, H. 1997, Herbig-Haro Flows and the Birth of Stars, 182, 225CrossRefGoogle Scholar
Spoon, H. W. W., Tielens, A. G. G. M., Armus, L., et al. 2006, ApJ, 638, 759CrossRefGoogle Scholar
Sugerman, B. E. K. et al. 2006, Science, 313, 196CrossRefGoogle Scholar
Thielemann, F. K., Nomoto, K. & Hashimoto, M-A. 1996, ApJ, 460, 408CrossRefGoogle Scholar
Tielens, A. G. G. M. & Allamandola, L. J. 1987, in “Interstellar Processes”, ASSL, 134, p 333.Google Scholar
Tielens, A. G. G. M. 1998, ApJ 499, 267CrossRefGoogle Scholar
Tielens, A. G. G. M. 2001, in Tetons 4: Galactic Structure, Stars and the Interstellar Medium, eds. Woodward, C. E., Bicay, M. D., and Shull, J. M. (San Francisco, ASP) 231, 92Google Scholar
Tielens, A. G. G. M. 2005, Physics and Chemistry of the Interstellar Medium, (Cambridge: University of Cambridge Press)CrossRefGoogle Scholar
Vink, J. et al. 1996, A&A, 307, L41.Google Scholar
Willingale, R., et al. 2002, A&A, 381, 1039Google Scholar
Wooden, D., et al. 1993, ApJS, 88, 477CrossRefGoogle Scholar
Zinner, E. 1998, Ann. Rev. Earth Planet. Sci., 26, 147CrossRefGoogle Scholar
Zinner, E. K. 2003, In Treatise on Geochemistry Vol 1, ed. Turekian, K. K., Holland, H. D., Davis, A. M.), (Amsterdam: Elsevier), p 17Google Scholar