Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T19:32:53.386Z Has data issue: false hasContentIssue false

Chemical Abundances of Seven Outer Halo M31 Globular Clusters from the Pan-Andromeda Archaeological Survey

Published online by Cambridge University Press:  21 March 2017

Charli M. Sakari*
Affiliation:
Department of Astronomy, University of Washington, Seattle, WA 98195-1580, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Observations of stellar streams in M31’s outer halo suggest that M31 is actively accreting several dwarf galaxies and their globular clusters (GCs). Detailed abundances can chemically link clusters to their birth environments, establishing whether or not a GC has been accreted from a satellite dwarf galaxy. This talk presents the detailed chemical abundances of seven M31 outer halo GCs (with projected distances from M31 greater than 30 kpc), as derived from high-resolution integrated-light spectra taken with the Hobby Eberly Telescope. Five of these clusters were recently discovered in the Pan-Andromeda Archaeological Survey (PAndAS)—this talk presents the first determinations of integrated Fe, Na, Mg, Ca, Ti, Ni, Ba, and Eu abundances for these clusters. Four of the target clusters (PA06, PA53, PA54, and PA56) are metal-poor ([Fe/H] < -1.5), α-enhanced (though they are possibly less alpha-enhanced than Milky Way stars at the 1 sigma level), and show signs of star-to-star Na and Mg variations. The other three GCs (H10, H23, and PA17) are more metal-rich, with metallicities ranging from [Fe/H] = -1.4 to -0.9. While H23 is chemically similar to Milky Way field stars, Milky Way GCs, and other M31 clusters, H10 and PA17 have moderately-low [Ca/Fe], compared to Milky Way field stars and clusters. Additionally, PA17’s high [Mg/Ca] and [Ba/Eu] ratios are distinct from Milky Way stars, and are in better agreement with the stars and clusters in the Large Magellanic Cloud (LMC). None of the clusters studied here can be conclusively linked to any of the identified streams from PAndAS; however, based on their locations, kinematics, metallicities, and detailed abundances, the most metal-rich PAndAS clusters H23 and PA17 may be associated with the progenitor of the Giant Stellar Stream, H10 may be associated with the SW Cloud, and PA53 and PA56 may be associated with the Eastern Cloud.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Carretta, E., Bragaglia, A., Gratton, R., et al. 2010, A&A, 520, 95 Google Scholar
Chou, M.-Y., Cunha, K., Majewski, S. R., et al. 2010, ApJ, 708, 1290 Google Scholar
Colucci, J. E., Bernstein, R. B., & Cohen, J. G. 2014, ApJ, 797, 116 CrossRefGoogle Scholar
Fardal, M. A., Weinberg, M. D., Babul, A., et al. 2013, MNRAS, 434, 2779 Google Scholar
Hendricks, B., Boeche, C., Johnson, C. I., et al. 2016, A&A, 585, 86 Google Scholar
Huxor, A. P., Mackey, A. D., Ferguson, A. M. N., et al. 2014, MNRAS, 442, 2165 Google Scholar
Ibata, R. A., Lewis, G. F., McConnachie, A. W., et al. 2014, ApJ, 780, 128 Google Scholar
Kirihara, T., Miki, Y., Mori, M., & Kawaguchi, T. 2016, arXiv:1603.02682Google Scholar
Letarte, B., Hill, V., Tolstoy, E., et al. 2010, A&A, 523, 17 Google Scholar
Mackey, A. D., Huxor, A. P., Ferguson, A. M. N., et al. 2010, ApJ, 717, 11 CrossRefGoogle Scholar
Mackey, A. D., Huxor, A. P., Ferguson, A. M. N., et al. 2013, MNRAS, 429, 281 Google Scholar
McConnachie, A. W., et al. 2009, Nature, 461, 66 Google Scholar
McMonigal, B., Bate, N. F., Conn, A. R., et al. 2016, MNRAS, 456, 405 Google Scholar
McWilliam, A. & Bernstein, R. 2008, ApJ, 684, 326 Google Scholar
McWilliam, A., Wallerstein, G., & Mottini, M. 2013, ApJ, 778, 149 Google Scholar
Monaco, L., Bellazzini, M., Bonifacio, P., et al. 2007, A&A, 464, 201 Google Scholar
Pietrinferni, A., Cassisi, S., Salaris, M., & Castelli, F. 2004, ApJ, 612, 168 Google Scholar
Pompéia, L., Hill, V., Spite, M., et al. 2008, A&A, 480, 379 Google Scholar
Pritzl, B. J., Venn, K. A., & Irwin, M. 2005, AJ, 130, 2140 Google Scholar
Reddy, B. E., Lambert, D. L., & Prieto, C. A. 2006, MNRAS, 367, 1329 CrossRefGoogle Scholar
Sakari, C. M., Shetrone, M., Venn, K., McWilliam, A., & Dotter, A. 2013, MNRAS, 434, 358 Google Scholar
Sakari, C. M., Venn, K., Shetrone, M., Dotter, A., & Mackey, D. 2014, MNRAS, 443, 2285 CrossRefGoogle Scholar
Sakari, C. M., Venn, K. A., Mackey, D., et al. 2015, MNRAS, 448, 1314 CrossRefGoogle Scholar
Sbordone, L., Bonifacio, P., Buonanno, R., et al. 2007, A&A, 465, 815 Google Scholar
Shetrone, M., Venn, K., Tolstory, E., et al. 2003, AJ, 125, 684 Google Scholar
Tafelmeyer, M., Jablonka, P., Hill, V., et al. 2010, A&A, 524, A58 Google Scholar
Veljanoski, J., Mackey, A. D., Ferguson, A. M. N., et al. 2014, MNRAS, 442, 2929 Google Scholar
Venn, K. A., Irwin, M., Shetrone, M. D., et al. 2004, AJ, 128, 1177 Google Scholar