Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T08:34:53.250Z Has data issue: false hasContentIssue false

Chemical abundances from planetary nebulae in local spiral galaxies

Published online by Cambridge University Press:  11 May 2017

Michael G. Richer
Affiliation:
Instituto de Astronomía, Universidad Nacional Autónoma de México, Apartado Postal 106, 22800 Ensenada, Baja California, México email: [email protected]
Marshall L. McCall
Affiliation:
Department of Physics and Astronomy, York University, Toronto, Ontario L3T 3R1, Canada email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

While the chemical abundances observed in bright planetary nebulae in local spiral galaxies are less varied than their counterparts in dwarfs, they provide new insight. Their helium abundances are typically enriched by less than 50% compared to the primordial abundance. Nitrogen abundances always show some level of secondary enrichment, but the absolute enrichment is not extreme. In particular, type I PNe are rare among the bright PNe in local spirals. The oxygen and neon abundances are very well correlated and follow the relation between these abundances observed in star-forming galaxies, implying that either the progenitor stars of these PNe modify neither abundance substantially or that they modify both to maintain the ratio (not predicted by theory). According to theory, these results imply that the progenitor stars of bright PNe in local spirals have masses of about 2 M or less. If so, the progenitors of these PNe have substantial lifetimes that allow us to use them to study the recent history of their host galaxies, including gravitational interactions with their neighbours. Areas that require further study include the systematic differences observed between spectroscopy obtained through slits and fibres, the uncertainties assigned to chemical abundances, including effects due to ionization correction factors, and the physics that gives rise to the PN luminosity function. Indeed, so long as we lack an understanding of how the last arises, our ability to use bright PNe as probes to understand the evolution of their host galaxies will remain limited.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Balick, B., Kwitter, K. B., Corradi, R. L. M., et al. 2013, ApJ, 774, 3 CrossRefGoogle Scholar
Bressolin, F., Stasińska, G., Vílchez, J. M., et al. 2010, MNRAS, 404, 1679 Google Scholar
Corradi, R. L. M., Kwitter, K. B., Balick, B., et al. 2015, ApJ, 807, 181 CrossRefGoogle Scholar
Cristallo, S., Piersanti, L., Straniero, O. et al. 2011, ApJS, 197, 17 CrossRefGoogle Scholar
Delgado-Inglada, G., Morisset, C., & Stasińska, G. 2015, MNRAS, 440, 536 Google Scholar
Dopita, M. A., Jacoby, G. H., & Vassiliadis, E. 1992, ApJ, 389, 27 Google Scholar
Fang, X., Zhang, Y., García-Benito, R., et al. 2013, ApJ, 774, 138 CrossRefGoogle Scholar
Gonçcalves, D. R., Magrini, L., & Teodorescu, A. M. 2014, MNRAS, 444, 1705 Google Scholar
Greenawalt, B., Walterbos, R. A. M., & Braun, R. 1997, ApJ, 483, 666 CrossRefGoogle Scholar
Izotov, Y. I., Stasińska, G., Meynet, G., et al. 2006, A&A, 448, 955 Google Scholar
Izotov, Y. I., Thuan, T. X., & Guseva, N. G. 2014, MNRAS, 445, 778 Google Scholar
Jacoby, G. H. & Ciardullo, R. 1999, ApJ, 515, 169 Google Scholar
Jacoby, G. H. & Ford, H. C. 1986, ApJ, 304, 490 CrossRefGoogle Scholar
Karakas, A. I. 2010, MNRAS, 403, 1413 CrossRefGoogle Scholar
Karakas, A. I. & Lattanzio, J. C. 2003, PASA, 20, 393 Google Scholar
Kniazev, A. Y., Grebel, E. K., Zucker, D. B., et al. 2014, AJ, 147, 16 CrossRefGoogle Scholar
Kwitter, K. B., Lehman, E. M. M., Balick, B. et al. 2012, ApJ, 753, 12 CrossRefGoogle Scholar
Magrini, L., Stanghellini, L., & Villaver, E. 2009, ApJ, 696, 729 Google Scholar
Peimbert, M., Luridiana, V., & Peimbert, A. 2007, ApJ, 666, 636 CrossRefGoogle Scholar
Perinotto, M., Morbidelli, L., & Scatarzi, A. 2004, MNRAS, 349, 793 Google Scholar
Pignatari, M, Herwig, F., Hirschi, R., et al. 2013, ApJS, submittedGoogle Scholar
Richer, M. G. & McCall, M. L. 2008, ApJ, 684, 1190 CrossRefGoogle Scholar
Richer, M. G. & McCall, M. L. 2015, unpublishedGoogle Scholar
Roth, M. M., Becker, T., Kelz, A. et al. 2004, ApJ, 603, 531 Google Scholar
Sanders, N. E., Caldwell, N., McDowell, J., et al. 2012, ApJ, 758, 133 Google Scholar
Stanghellini, L., Magrini, L., Villaver, E., & Galli, D. 2010, A&A, 521, A3 Google Scholar
Stanghellini, L., Magrini, L., Casasola, V., & Villaver, E. 2014, A&A, 567, A88 Google Scholar
Stasińska, G., Peña, M., Bresolin, F., & Tsamis, Y. G. 2013, A&A, 552, A12 Google Scholar