No CrossRef data available.
Published online by Cambridge University Press: 13 January 2020
I present our observations and modeling of the 1.3 mm and 3.18 mm dust continuum emission in Class 0 protostars, from the IRAM-PdBI CALYPSO survey. We show that most protostars are better reproduced by models including a disk-like dust continuum component contributing to the flux at small scales, but less than 25% of these candidate protostellar disks are resolved at radii >60 au, which favors magnetized models of rotating protostellar collapse for disk formation (Maury et al. 2019). I also present new ALMA observations of the molecular line emission in the IRAM04191 protostar, suggesting a small counter-rotating disk is detected in this young low-luminosity solar-type protostar. Finally, I show our ALMA observations of the magnetic field topology in the B335 protostar, which when compared to the typical output from protostellar collapse models, suggest the magnetic field might be responsible for constraining the disk size to remain very small in this protostar (Maury et al. 2018).