Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T07:47:39.207Z Has data issue: false hasContentIssue false

Characterization of X-ray flare properties of AB Dor

Published online by Cambridge University Press:  09 September 2016

S. Lalitha*
Affiliation:
Indian Institute of Astrophysics, II Block, Koramangala, Bangalore 560034, India Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The strong similarities between the flares observed on the Sun and in low mass stars has raised question regarding dynamo in these stars. Using the Sun as a prototype, one may be able to address this. In this paper, we present an analysis of 30 intense X-ray flares observed from AB Dor. These flares detected in XMM-Newton data show a rapid rise (500-3000 s) and a slow decay (1000-6000 s). Our studies suggest that the scaling law between the flare peak emission measure and the flare peak temperature for all the flares observed on AB Dor is very similar to the relationship followed by solar flares. Furthermore, we obtain the frequency distribution of flare energies which is a crucial diagnostic to calculate the overall energy residing in a flare. Our results of this study indicate that the large flare (1033 ≤ E ≤ 1034 erg) may not contribute to the heating of the corona.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Arnaud, K. A. (1996), ‘ASP Conf. Ser. 101: Astronomical Data Analysis Software and Systems V’, pp. 17Google Scholar
Aschwanden, M. J., Stern, R. A. & Güdel, M. (2008), ApJ 672, 659673 Google Scholar
Audard, M., Güdel, M. & Guinan, E. F. (1999), ApJL 513, L53L56 Google Scholar
Collura, A., Pasquini, L. & Schmitt, J. H. M. M. (1988), A&A 205, 197206 Google Scholar
Crosby, N. B., Aschwanden, M. J. & Dennis, B. R. (1993), Sol. Phys. 143, 275299 CrossRefGoogle Scholar
Grevesse, N. & Sauval, A. J. (1998), Space sci. rev. 85, 161174 Google Scholar
Güdel, M. (2004), A&A rev. 12, 71237.Google Scholar
Guirado, J. C., Marcaide, J. M., Martí-Vidal, I., Le Bouquin, J.-B., Close, L. M., Cotton, W. D. & Montalbán, J. 2011, A&A, 533, A106 Google Scholar
Henry, T. J., Subasavage, J. P., Brown, M. A., Beaulieu, T. D., Jao, W.-C. & Hambly, N. C. 2004, AJ, 128, 2460H Google Scholar
Hudson, H. S. (1991), Sol. Phys. 133, 357369 CrossRefGoogle Scholar
Lin, R. P., Schwartz, R. A., Kane, S. R., Pelling, R. M. & Hurley, K. C. (1984), ApJ 283, 421425 CrossRefGoogle Scholar
Krucker, S. & Benz, A. O. (1998), ApJL 501, L213 Google Scholar
Kuerster, M., Schmitt, J. H. M. M. & Cutispoto, G., 1994, A&A, 289, 899K Google Scholar
Lalitha, S., Fuhrmeister, B., Wolter, U., Schmitt, J. H. M. M., Engels, D. & Wieringa, M. H. 2013, A&A, 560A, 69L Google Scholar
Lalitha, S. & Schmitt, J. H. M. M. 2013, A&A, 559A, 119L Google Scholar
Shimizu, T. 1995, PASJ 47 251–263 Google Scholar
Stern, R. A., Uchida, Y., Tsuneta, S., & Nagase, F. 1992, ApJ 400, 321329 Google Scholar
Vilhu, O. & Linsky, J. L. 1987, PASP, 99, 1071 Google Scholar
Yuda, S., Hiei, E., Takahashi, M., & Watanabe, T. 1997, PASJ 49 115–121 Google Scholar