Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T16:43:31.120Z Has data issue: false hasContentIssue false

Characterising the local void with the X-ray cluster survey REFLEX II

Published online by Cambridge University Press:  12 October 2016

Chris A. Collins
Affiliation:
Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF, UK email: [email protected]
Hans Böhringer
Affiliation:
Max-Planck-Institut für extraterrestrische Physik, D-85748 Garching, Germany email: [email protected]
Martyn Bristow
Affiliation:
Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF, UK email: [email protected]
Gayoung Chon
Affiliation:
Max-Planck-Institut für extraterrestrische Physik, D-85748 Garching, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Claims of a significant underdensity or void in the density distribution on scales out to ≃ 300 Mpc have recently been made using samples of galaxies. We present the results of an alternative test of the matter distribution on these scales using clusters of galaxies, which provide an independent and powerful probe of large-scale structure. We study the density distribution of X-ray clusters from the ROSAT-based REFLEX II catalogue, which covers a contiguous area of 4.24 steradians in the southern hempsphere (34% of the entire sky). Using the normalised comoving number density of clusters we find evidence for an underdensity (30-40%), out to z∼ 0.04, equivalent to ≃170 Mpc and with a significance of 3.4σ. On scales between 300 Mpc and 1 Gpc the distribution of REFLEX II clusters is consistent with being uniform. We also confirm recent results that the underdensity has a large contribution from the direction of the South Galactic Cap region, but is not significant in the direction of the Northern Galactic Cap as viewed from the southern sky. Both the limited size of the detected underdensity and its lack of isotropy, argue against the idea that the Type Ia supernovae data can be explained without the need for dark energy.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Alexander, S., Biswas, T., Notari, A., & Vaid, D. 2009, JCAP, 9, 25 CrossRefGoogle Scholar
Böhringer, H., Chon, G., Collins, C. A., Guzzo, L., et al. 2013, A&A, 555, A30 Google Scholar
Böhringer, H., Chon, G., & Collins., C. A. 2014, A&A, 570, A31 Google Scholar
Böhringer, H., Chon, G., Bristow, M., & Collins, C. A. 2014b, A&A, in press, arXiv:1410.2172 Google Scholar
Chon, G., Böhringer, H., & Nowak, N. 2013, MNRAS, 429, 3272.CrossRefGoogle Scholar
Chon, G., Böhringer, H., Collins, C. A., & Krause, M. 2014, A&A, 567, A144 Google Scholar
February, S., Larena, J., Smith, M., & Clarkson, C. 2010, MNRAS, 405, 2231 Google Scholar
Kaiser, N. 1984, ApJ, 284, L9 CrossRefGoogle Scholar
Keenan, R. C., Barger, A. J., & Cowie, L. L. 2013, ApJ, 775, 62 CrossRefGoogle Scholar
Marra, L., Amendola, L., Sawicki, I., & Valkenburg, W. 2013, Phys. Rev. Lett., 110, 241305 CrossRefGoogle Scholar
Moss, A., Zibin, J. P., & Scott, D. 2011, Phys. Rev. D, 83, 103515 CrossRefGoogle Scholar
Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R. A., et al. 1999, ApJ 517, 565 CrossRefGoogle Scholar
Planck Collaboration 2013 results XVI 2013, arXiv 1303.5076v2 Google Scholar
Riess, A. G., Macri, L., Casertano, S., Lampeitl, H., et al. 2011, ApJ, 730, 119 CrossRefGoogle Scholar
Schmidt, B., Suntzeff, N. B., Phillips, M. M., Schommer, R. A., et al. 1998, ApJ, 507, 46 CrossRefGoogle Scholar
Trümper, J. 1993, Science, 260, 1769 CrossRefGoogle Scholar
Voges, W., Aschenbach, B., Boller, T., Bräuninger, H., et al. 1999, A&A, 349, 389 Google Scholar
Whitbourn, J. R. & Shanks, T. 2014, MNRAS, 437, 2146 CrossRefGoogle Scholar