Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T08:51:20.411Z Has data issue: false hasContentIssue false

Changing Structures in Galactic Star Clusters

Published online by Cambridge University Press:  01 September 2007

S. Schmeja
Affiliation:
Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal email: [email protected], [email protected]
M. S. N. Kumar
Affiliation:
Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal email: [email protected], [email protected]
D. Froebrich
Affiliation:
Centre for Astrophysics and Planetary Science, University of Kent, Canterbury, CT2 7NH, UK email: [email protected]
R. S. Klessen
Affiliation:
Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigate the structures of embedded and open clusters using statistical methods, in particular the combined parameter , which permits to quantify the cluster structure. Star clusters build up from several subclusters evolving from a structured to a more centrally concentrated stage. The evolution is not only a function of time, but also of the mass of the objects. Massive stars are usually centrally concentrated, while lower-mass stars are more widespread, reflecting the effect of mass segregation. Using this method we find that in IC 348 and the Orion Nebula Cluster the spatial distribution of brown dwarfs does not follow the central clustering of stars, giving important clues to their formation mechanism by supporting the ejected embryo scenario.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Cartwright, A. & Whitworth, A. P. 2004, MNRAS 348, 589CrossRefGoogle Scholar
Dias, W. S., Assafin, M., Flório, V., Alessi, B. S., & Líbero, V. 2006, A&A 446, 949Google Scholar
Froebrich, D., Scholz, A. & Raftery, C. L. 2007, MNRAS 374, 399CrossRefGoogle Scholar
Goodwin, S. P., Hubber, D. A., Moraux, E. & Whitworth, A.P. 2005, Astron. Nachr. 326, 1040CrossRefGoogle Scholar
Gower, J. C. & Ross, G. J. S. 1969, Applied Statistics 18, 54CrossRefGoogle Scholar
Kroupa, P. & Bouvier, J. 2003, MNRAS 346, 369CrossRefGoogle Scholar
Kumar, M. S. N. & Schmeja, S. 2007, A&A 471, L33Google Scholar
Lada, C. J. & Lada, E. A. 2003, ARAA 41, 57CrossRefGoogle Scholar
Reipurth, B. & Clarke, C. J. 2001, AJ 122, 432CrossRefGoogle Scholar
Schmeja, S. & Klessen, R. S. 2004, A&A 419, 405Google Scholar
Schmeja, S. & Klessen, R. S. 2006, A&A 449, 151Google Scholar