Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-18T13:07:55.432Z Has data issue: false hasContentIssue false

Chang'e-2 spacecraft observations of asteroid 4179 Toutatis

Published online by Cambridge University Press:  01 March 2016

Jianghui Ji
Affiliation:
Key Laboratory of Planetary Sciences, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, China
Yun Jiang
Affiliation:
Key Laboratory of Planetary Sciences, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, China
Yuhui Zhao
Affiliation:
Key Laboratory of Planetary Sciences, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, China
Su Wang
Affiliation:
Key Laboratory of Planetary Sciences, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, China
Liangliang Yu
Affiliation:
Key Laboratory of Planetary Sciences, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, China Lunar and Planetary Science Laboratory, Macau University of Science and Technology, Taipa, Macau email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

On 13 December 2012, Chang'e-2 completed a successful flyby of the near-Earth asteroid 4179 Toutatis at a closest distance of 770 meters from the asteroid's surface. The observations show that Toutatis has an irregular surface and its shape resembles a ginger-root of a smaller lobe (head) and a larger lobe (body). Such bilobate shape is indicative of a contact binary origin for Toutatis. In addition, the high-resolution images better than 3 meters provide a number of new discoveries about this asteroid, such as an 800-meter depression at the end of the large lobe, a sharply perpendicular silhouette near the neck region, boulders, indicating that Toutatis is probably a rubble-pile asteroid. Chang'e-2 observations have significantly revealed new insights into the geological features and the formation and evolution of this asteroid. In final, we brief the future Chinese asteroid mission concept.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Abe, M.et al.Science, 312: 13341338, 2006CrossRefGoogle Scholar
Benner, L. A. M.et al.Icarus, 182: 474481, 2006CrossRefGoogle Scholar
Binzel, R. P.et al.Icarus, 200: 480485, 2009.CrossRefGoogle Scholar
Brozovic, M.et al.Icarus, 208: 207220, 2010.CrossRefGoogle Scholar
Bu, Y. L., et al.AJ, 149: 21, 2015.CrossRefGoogle Scholar
Busch, M. W.et al.Icarus, 209: 535541, 2010.CrossRefGoogle Scholar
Busch, M. W.et al.EPSC-DPS2011, 6: 297, 2011.Google Scholar
Busch, M. W.et al.2012 AGU Fall Meeting, P31A-1873, 2012.Google Scholar
Busch, M. W.et al.2014 Asteroids, Comets, Meteors Meeting, 69, 2014.Google Scholar
Chapman, C. R.et al.Icarus, 155: 104118, 2002.CrossRefGoogle Scholar
Ćuk, M.ApJL, 659: 5760, 2007.CrossRefGoogle Scholar
Delbo', M., et al.Icarus, 190: 236249, 2007CrossRefGoogle Scholar
Dunn, T. L. & Burbine, T. H.Lunar Planet. Sci., 43, March 19–23, 2012, The Woodlands, Texas. LPI Contribution No. 1659, ID 2305Google Scholar
Fujiwara, A., Kawaguchi, J., Yeomans, D.et al.Science, 312: 13301334, 2006CrossRefGoogle Scholar
Howell, E. S., Britt, D. T., Bell, J. F., et al.Icarus, 111: 468474, 1994CrossRefGoogle Scholar
Huang, J. C.et al.Scientfic Reports, 3: 34113416, 2013a.CrossRefGoogle Scholar
Huang, J. C.et al.Science China Technological Sciences, 43: 596601, 2013b.Google Scholar
Hudson, R. S. & Ostro, S. J.Science, 270: 8486, 1995.CrossRefGoogle Scholar
Hudson, R. S. & Ostro, S. J.Icarus, 135: 451457, 1998.CrossRefGoogle Scholar
Hudson, R. S., Ostro, S. J., & Scheeres, D. J.Icarus, 161: 346355, 2003.CrossRefGoogle Scholar
Jiang, Y., et al. accepted to Scientific Reports, 5: 16029, 2015a.CrossRefGoogle Scholar
Jiang, Y., et al. accepted to Proceedings IAU Symposium No. 318, 153–155, 2015b.Google Scholar
Küppers, M.et al.Planet. Space. Sci., 66: 7178, 2012.CrossRefGoogle Scholar
Mazrouei, S., et al.Icarus, 229: 181189, 2014.CrossRefGoogle Scholar
Melosh, H. J. Planetary Surface Processes. Cambridge University Press, Cambridge, 2011.CrossRefGoogle Scholar
Michikami, T.et al.Earth Planets Space, 60: 1320, 2008.CrossRefGoogle Scholar
Mottola, S., & Lahulla, F.Icarus, 146: 556567, 2000.CrossRefGoogle Scholar
Ostro, S. J.et al.Science, 270: 8083, 1995.CrossRefGoogle Scholar
Ostro, S. J., et al.Icarus, 137: 122139, 1999.CrossRefGoogle Scholar
Ostro, S. J., et al., 2002, Asteroids III, Univ. of Arizona Press, Tucson: 151CrossRefGoogle Scholar
Pravec, P., Wolf, M., & Lenka, S.Icarus, 133: 7988, 1998.CrossRefGoogle Scholar
Pravec, P.et al.Icarus, 146: 190203, 2000.CrossRefGoogle Scholar
Reddy, V.et al.Icarus, 221, 11771179, 2012CrossRefGoogle Scholar
Scheeres, D. J.et al.Icarus, 132: 5379, 1998.CrossRefGoogle Scholar
Scheeres, D. J.et al.Icarus, 147: 106118, 2000.CrossRefGoogle Scholar
Scheeres, D. J.Icarus, 189: 370385, 2007.CrossRefGoogle Scholar
Scheirch, P.et al.Icarus, 245: 5663, 2015.CrossRefGoogle Scholar
Sierks, H., Barbieri, C., Lamy, P. L.et al.Science, 347: aaa1044, 2015.CrossRefGoogle ScholarPubMed
Souchay, J.et al.A&A, 563: 24, 2014.Google Scholar
Takahashi, Y., Busch, M. W. & Scheeres, D. J.AJ, 146: 95, 2013.CrossRefGoogle Scholar
Taylor, P. A. & Margot, J-LIcarus, 2112: 661676, 2011.CrossRefGoogle Scholar
Thomas, P. C., Veverka, J., Robinson, M. S. & Murchie, S.Nature, 413: 394396, 2001.CrossRefGoogle Scholar
Yu, L. L., Ji, J. H., & Wang, S.MNRAS, 439: 33573370, 2014.CrossRefGoogle Scholar
Zhao, Y. H.et al.MNRAS, 450: 3620, 2015a.CrossRefGoogle Scholar
Zhao, Y. H.et al.submitted to Proceedings IAU Symposium No. 318, 156–159, 2015b.Google Scholar
Zhu, M. H.et al.Geophys. Res. Lett., 41: 328333, 2014.CrossRefGoogle Scholar
Zou, X. D.et al.Icarus, 229: 348354, 2014.CrossRefGoogle Scholar