Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T08:44:40.654Z Has data issue: false hasContentIssue false

Challenges of AGB modelling with dust

Published online by Cambridge University Press:  11 May 2017

Paolo Ventura
Affiliation:
INAF - Osservatorio Astronomico di Roma, 00077, Monte Porzio Catone (RM), Italy
Flavia Dell’Agli
Affiliation:
INAF - Osservatorio Astronomico di Roma, 00077, Monte Porzio Catone (RM), Italy Università di Roma ”La Sapienza”, Piazzale Aldo Moro 5, 00136, Roma, Italy
Marcella Di Criscienzo
Affiliation:
INAF - Osservatorio Astronomico di Roma, 00077, Monte Porzio Catone (RM), Italy
D. A. García–Hernández
Affiliation:
Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife, Spain Departamento de Astrofísica, Universidad de La Laguna (ULL), E-38206 La Laguna, Tenerife, Spain
Letizia Stanghellini
Affiliation:
National Optical Astronomy Observatory, 950 N. Cherry Avenue, Tucson (AZ) 85719, USA
Raffaella Schneider
Affiliation:
INAF - Osservatorio Astronomico di Roma, 00077, Monte Porzio Catone (RM), Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We report on the most recent progresses on the modelling of the asymptotic giant branch (AGB) phase. We show that dust formation in the wind of AGBs is sensitive to the mass of the precursor, low–mass AGB with mass below ~ 3 M producing mainly carbonaceous dust, whereas their counterparts of higher mass produce silicates and alumina dust. We discuss the uncertainty of the results, due to the poor knowledge of physical mechanisms highly important for AGB evolution, primarily convection and mass loss. We show how the chemical composition of planetary nebulae can be used to draw information on the main features of AGB evolution.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Ferrarotti, A. D. & Gail, H. P. 2006, A&A, 553, 576 Google Scholar
Iben, I. Jr., 1982, ApJ, 260, 821 Google Scholar
Karakas, A. I. & Lattanzio, J. C. 2014, PASA, 31, e030 Google Scholar
Leisy, P. & Dennefeld, M. 2006, A&A, 456, 451 Google Scholar
Paczyński, B. 1970, Acta Astr., 20, 47 Google Scholar
Santini, P., Maiolino, R., Magnelli, B., et al. 2014, A&A, 562, A30 Google Scholar
Schwarzschild, M. & Harm, R. 1965, ApJ, 142, 855 Google Scholar
Stanghellini, L., Shaw, R. A., Balick, B., & Blades, J. C. 2000, ApJL, 534, L167 Google Scholar
Stanghellini, L., Garcia-Lario, P., & García-Hernández, D. A. et al. 2007, ApJ, 671, 1669 Google Scholar
Valiante, R., Schneider, R., Bianchi, S., Andersen, A., & Anja, C. 2009, MNRAS, 397, 1661 Google Scholar
Ventura, P. & D'Antona, F. 2005, A&A, 431, 279 Google Scholar
Ventura, P., Dell'Agli, F., Di Criscienzo, M., Schneider, R., Rossi, C., La Franca, F., Gallerani, S., & Valiante, R. 2014, MNRAS, 439, 977 Google Scholar
Ventura, P., Stanghellini, L., Dell'Agli, F., García-Hernández, D. A. & Di Criscienzo, M. 2015, MNRAS, 452, 3679 Google Scholar