Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-20T15:36:23.909Z Has data issue: false hasContentIssue false

Challenges in Stellar Population Studies

Published online by Cambridge University Press:  13 April 2010

Jarle Brinchmann*
Affiliation:
Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA, Leiden, The Netherlands email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The stellar populations of galaxies contain a wealth of detailed information. From the youngest, most massive stars, to almost invisible remnants, the history of star formation is encoded in the stars that make up a galaxy. Extracting some, or all, of this information has long been a goal of stellar population studies. This was achieved in the last couple of decades and it is now a routine task, which forms a crucial ingredient in much of observational galaxy evolution, from our Galaxy out to the most distant systems found. In many of these domains we are now limited not by sample size, but by systematic uncertainties and this will increasingly be the case in the future.

The aim of this review is to outline the challenges faced by stellar population studies in the coming decade within the context of upcoming observational facilities. I will highlight the need to better understand the near-IR spectral range and outline the difficulties presented by less well understood phases of stellar evolution such as thermally pulsing AGB stars, horizontal branch stars and the very first stars. The influence of rotation and binarity on stellar population modelling is also briefly discussed.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Allam, S. S., et al. 2007, ApJL, 662, L51CrossRefGoogle Scholar
Arnaboldi, M., et al. 2007, ESO Messenger, 127, 28Google Scholar
Arnouts, S., et al. , 2007, A&A, 476, 137Google Scholar
Baade, W., 1944, ApJ, 100, 137CrossRefGoogle Scholar
Bell, E. F. & de Jong, R. S. 2001, ApJ, 550, 212CrossRefGoogle Scholar
Belokurov, V., et al. 2009, MNRAS, 392, 104CrossRefGoogle Scholar
Belokurov, V., et al. 2007, ApJL, 671, L9CrossRefGoogle Scholar
Bertelli, G., et al. 1994, A&AS, 106, 275Google Scholar
Brinchmann, J. & Ellis, R. S. 2000, ApJL, 536, L77CrossRefGoogle Scholar
Brinchmann, J., Kunth, D., & Durret, F. 2008, A&A, 485, 657Google Scholar
Bruzual, G. & Charlot, S. 2003, MNRAS, 344, 1000CrossRefGoogle Scholar
Campbell, M. A., et al. 2008, in SPIE Vol. 7015.Google Scholar
Carter, D., et al. 2009, MNRAS, 397, 695CrossRefGoogle Scholar
Cassisi, S., Salaris, M., Castelli, F., & Pietrinferni, A. 2004, ApJ, 616, 498CrossRefGoogle Scholar
Coelho, P., et al. 2005, A&A, 443, 735Google Scholar
Coelho, P., et al. 2007, MNRAS, 382, 498CrossRefGoogle Scholar
Colless, M., et al. 2001, MNRAS, 328, 1039CrossRefGoogle Scholar
Conroy, C., Gunn, J. E., & White, M. 2009, ApJ, 699, 486CrossRefGoogle Scholar
Conroy, C., Gunn, J. E., & White, M. 2009, ApJ, 699, 486CrossRefGoogle Scholar
da Cunha, E., Charlot, S., & Elbaz, D. 2008, MNRAS, 388, 1595CrossRefGoogle Scholar
Davis, M., et al. 2003, in SPIE Vol. 4834, pp. 161-172Google Scholar
Dickinson, M., et al. 2003, ApJ, 587, 25CrossRefGoogle Scholar
Dotter, A., et al. 2007, ApJ, 666, 403CrossRefGoogle Scholar
Drory, N., et al. 2001, ApJL, 562, L111CrossRefGoogle Scholar
Eldridge, J. J., Izzard, R. G., & Tout, C. A. 2008, MNRAS, 111Google Scholar
Eldridge, J. J. & Stanway, E. R., 2009, arXiv:0908.1386Google Scholar
Eminian, C., et al. 2008, MNRAS, 384, 930CrossRefGoogle Scholar
Faber, S. M. 1972, A&A, 20, 361Google Scholar
Fairbairn, M., Scott, P., & Edsjø, J. 2008, Phys. Rev., 77, 75Google Scholar
Fioc, M. & Rocca-Volmerange, B. 1997, A&A, 326, 950Google Scholar
Fontana, A. et al. 2003, ApJL, 594, L9CrossRefGoogle Scholar
Freese, K., Bodenheimer, P., Spolyar, D., & Gondolo, P. 2008, ApJ, 685, L101CrossRefGoogle Scholar
Gallart, C., Zoccali, M., & Aparicio, A. 2005, ARAA, 43, 387CrossRefGoogle Scholar
Gardner, J. P., et al. 2006, Space Sci. Revs, 123, 485CrossRefGoogle Scholar
Giallongo, E., et al. 1998, AJ, 115, 2169CrossRefGoogle Scholar
Graves, G. J., Faber, S. M., & Schiavon, R. P. 2009a, ApJ, 693, 486CrossRefGoogle Scholar
Graves, G. J., Faber, S. M., & Schiavon, R. P. 2009b, ApJ, 698, 1590CrossRefGoogle Scholar
Greif, T. H. & Bromm, V. 2006, MNRAS, 373, 128CrossRefGoogle Scholar
Hainline, K. N. et al. 2009, ApJ, 701, 52CrossRefGoogle Scholar
Han, Z., Podsiadlowski, P., & Lynas-Gray, A. E. 2007, MNRAS, 380, 1098CrossRefGoogle Scholar
Iocco, F. et al. 2008, MNRAS, 390, 1655Google Scholar
Kauffmann, G. et al. , 2003a, MNRAS, 341, 33CrossRefGoogle Scholar
Kauffmann, G. et al. 2003b, MNRAS, 341, 54CrossRefGoogle Scholar
Kotulla, R. et al. 2009, MNRAS, 396, 462CrossRefGoogle Scholar
Kubo, J. M. et al. 2009, ApJL, 696, L61CrossRefGoogle Scholar
Lada, C. J. 2006, ApJL, 640, L63CrossRefGoogle Scholar
Le Fèvre, O. et al. , 2004, A&A, 428, 1043Google Scholar
Lee, H.-C., Worthey, G., & Blakeslee, J. P., 2009, arXiv:0902.1177Google Scholar
Lee, H.-C. et al. 2009, ApJ, 694, 902CrossRefGoogle Scholar
Leitherer, C. et al. 1999, ApJS, 123, 3CrossRefGoogle Scholar
Lejeune, T., Cuisinier, F., & Buser, R. 1997, A&AS, 125, 229Google Scholar
Lin, H. et al. 2009, ApJ, 699, 1242CrossRefGoogle Scholar
Maeder, A. 1974, A&A, 32, 177Google Scholar
Maraston, C. 2005, MNRAS, 362, 799CrossRefGoogle Scholar
Maraston, C. et al. 2006, ApJ, 652, 85CrossRefGoogle Scholar
Maraston, C. et al. 2009, A&A, 493, 425Google Scholar
Marchesini, D. et al. 2009, ApJ, 701, 1765CrossRefGoogle Scholar
Marchetti, E. et al. , 2007, ESO Messenger, 129, 8Google Scholar
Marigo, P. & Girardi, L. 2007, A&A, 469, 239Google Scholar
Marigo, P. et al. 2008, A&A, 482, 883Google Scholar
Mármol-Queraltó, E. et al. 2008, A&A, 489, 885Google Scholar
Martins, L. P. & Coelho, P. 2007, MNRAS, 381, 1329CrossRefGoogle Scholar
Matteucci, F. & Recchi, S. 2001, ApJ, 558, 351CrossRefGoogle Scholar
McKee, C. F. & Tan, J. C. 2008, ApJ, 681, 771CrossRefGoogle Scholar
Meynet, G. & Maeder, A. 2005, A&A, 429, 581Google Scholar
Meynet, G. et al. 2009, arXiv:0901.4489Google Scholar
Moni Bidin, C. et al. 2008, ASPC, 392, 27Google Scholar
Moretti, A. et al. , 2009, A&A, 493, 539Google Scholar
Munari, U., Sordo, R., Castelli, F., & Zwitter, T. 2005, A&A, 442, 1127Google Scholar
Muzzin, A. et al. 2009, ApJ, 701, 1839CrossRefGoogle Scholar
Origlia, L. et al. 2008, ApJL, 687, L79CrossRefGoogle Scholar
Percival, S. M., Salaris, M., Cassisi, S., & Pietrinferni, A. 2009, ApJ, 690, 427CrossRefGoogle Scholar
Percival, S. M. & Salaris, M. 2009, ApJ, 703, 1123CrossRefGoogle Scholar
Pettini, M. et al. 2000, ApJ, 528, 96CrossRefGoogle Scholar
Pietrinferni, A., Cassisi, S., Salaris, M., & Castelli, F. 2004, ApJ, 612, 168CrossRefGoogle Scholar
Pietrinferni, A., Cassisi, S., Salaris, M., & Castelli, F. 2006, ApJ, 642, 797CrossRefGoogle Scholar
Pozzetti, L. et al. 2007, A&A, 474, 443Google Scholar
Quider, A. M., Pettini, M., Shapley, A. E., & Steidel, C. C. 2009, MNRAS, 398, 1263CrossRefGoogle Scholar
Raimondo, G. 2009, ApJ, 700, 1247CrossRefGoogle Scholar
Rayner, J. T., Cushing, M. C., & Vacca, W. D. 2009, arXiv:0909.0818Google Scholar
Ripamonti, E. et al. 2009, arXiv:0903.0346Google Scholar
Rix, S. A. et al. 2004, ApJ, 615, 98CrossRefGoogle Scholar
Schaerer, D. 2003, A&A, 397, 527Google Scholar
Schiavon, R. P. 2007, ApJS, 171, 146CrossRefGoogle Scholar
Scott, P., Fairbairn, M., & Edsjø, J. 2009, MNRAS, 394, 82CrossRefGoogle Scholar
Searle, L., Sargent, W. L. W., & Bagnuolo, W. G. 1973, ApJ, 179, 427CrossRefGoogle Scholar
Smail, I. et al. 2007, ApJL, 654, L33CrossRefGoogle Scholar
Smith, R. J., Lucey, J. R., & Hudson, M. J. 2009, arXiv:0908.2990Google Scholar
Spolyar, D., Freese, K., & Gondolo, P. 2008, Phys. Rev. Lett., 100, 19CrossRefGoogle Scholar
Tan, J. C. & McKee, C. F. 2008, in O'Shea, B. W. & Heger, A. ed., AIPC 990, pp. 47–62Google Scholar
Tantalo, R., Chiosi, C., & Piovan, L. 2007, A&A, 462, 481Google Scholar
Thomas, D., Maraston, C., & Bender, R. 2003, MNRAS, 339, 897CrossRefGoogle Scholar
Thomas, D. et al. 2005, ApJ, 621, 673CrossRefGoogle Scholar
Tinsley, B. M. 1968, ApJ, 151, 547CrossRefGoogle Scholar
Tinsley, B. M. 1980, Fundamentals of Cosmic Physics, 5, 287Google Scholar
Tojeiro, R. et al. 2009, arXiv:0904.1001Google Scholar
Tolstoy, E., Hill, V., & Tosi, M. 2009, arXiv: 0904.4505Google Scholar
Tosi, M. et al. 1991, AJ, 102, 951CrossRefGoogle Scholar
Trager, S. C. et al. 2000, ApJ, 120, 165CrossRefGoogle Scholar
Tremonti, C. A. et al. 2004, ApJ, 613, 898CrossRefGoogle Scholar
Tripicco, M. J. & Bell, R. A. 1995, AJ, 110, 3035CrossRefGoogle Scholar
Tumlinson, J., Giroux, M. L., & Shull, J. M. 2001, ApJL, 550, L1CrossRefGoogle Scholar
Tumlinson, J., Shull, J. M., & Venkatesan, A. 2003, ApJ, 584, 608CrossRefGoogle Scholar
Van Bever, J. & Vanbeveren, D. 2003, A&A, 400, 63Google Scholar
van der Wel, A. et al. 2006, ApJ, 652, 97CrossRefGoogle Scholar
Vazdekis, A. 1999, ApJ, 513, 224CrossRefGoogle Scholar
Walcher, C. J. et al. 2009, MNRAS, 09LGoogle Scholar
Weiss, A., Ferguson, J., & Salaris, M. 2007, in IAU Symposium Vol. 241 pp. 43–44Google Scholar
Wilkins, S. M., Trentham, N, & Hopkins, A. M. 2008, MNRAS, 385, 687CrossRefGoogle Scholar
Worthey, G., Faber, S. M., & Gonzalez, J. J. 1992, ApJ, 398, 69CrossRefGoogle Scholar
York, D. G. et al. 2000, AJ, 120, 1579CrossRefGoogle Scholar