Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T00:26:54.179Z Has data issue: false hasContentIssue false

Central compact objects and their magnetic fields

Published online by Cambridge University Press:  20 March 2013

Wynn C. G. Ho*
Affiliation:
School of Mathematics, University of Southampton, Southampton, SO17 1BJ, UK email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Central compact objects (CCOs) are neutron stars that are found near the center of supernova remnants, and their association with supernova remnants indicates these neutron stars are young (≲ 104 yr). Here we review the observational properties of CCOs and discuss implications, especially their inferred magnetic fields. X-ray timing and spectral measurements suggest CCOs have relatively weak surface magnetic fields (~ 1010 − 1011 G). We argue that, rather than being created with intrinsically weak fields, CCOs are born with strong fields and we are only seeing a weak surface field that is transitory and evolving. This could imply that CCOs are one manifestation in a unified picture of neutron stars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Becker, W., Prinz, T., Winkler, P. F., & Petre, R. 2012, ApJ, 755, 141Google Scholar
Bernal, C. G., Lee, W. H., & Page, D. 2010, Revista Mexicana de Astron. Astrof., 46, 301Google Scholar
Bignami, G. F., Caraveo, P. A., Luca, A. D., & Mereghetti, S. 2003, Nature, 423, 725Google Scholar
Chevalier, R. A. 1989, ApJ, 346, 847Google Scholar
De Luca, A. 2008, in: Bassa, C. G.et al. (eds.), AIP Conf. Proc. Vol. 983, 40 Years of Pulsars (Melville: American Inst. Phys.), p. 311Google Scholar
De Luca, A.et al. 2004, A&A, 418, 625Google Scholar
De Luca, A.et al. 2011, A&A, 525, A106Google Scholar
De Luca, A.et al. 2012, MNRAS, 421, L72CrossRefGoogle Scholar
Faucher-Giguère, C.-A. & Kaspi, V. M. 2006, ApJ, 643, 332Google Scholar
Geppert, U., Page, D., & Zannias, T. 1999, A&A, 345, 847Google Scholar
Goldreich, P. & Reisenegger, A. 1992, ApJ, 395, 250Google Scholar
Gotthelf, E. V. & Halpern, J. P. 2008, in: Bassa, C. G.et al. (eds.), AIP Conf. Proc. Vol. 983, 40 Years of Pulsars (Melville: American Inst. Phys.), p. 320Google Scholar
Gotthelf, E. V. & Halpern, J. P. 2009, ApJ, 695, L35Google Scholar
Gotthelf, E. V., Perna, R., & Halpern, J. P. 2010, ApJ, 724, 1316Google Scholar
Halpern, J. P. & Gotthelf, E. V. 2010, ApJ, 709, 436CrossRefGoogle Scholar
Halpern, J. P. & Gotthelf, E. V. 2011, ApJ, 733, L28Google Scholar
Halpern, J. P., Gotthelf, E. V., Camilo, F., & Seward, F. D. 2007, ApJ, 665, 1304Google Scholar
Ho, W. C. G. 2007, MNRAS, 380, 71Google Scholar
Ho, W. C. G. 2011, MNRAS, 414, 2567Google Scholar
Ho, W. C. G. 2012, MNRAS, submitted (arXiv:1208.1297)Google Scholar
Ho, W. C. G. & Andersson, N. 2012, Nature Physics, in press (arXiv:1208.3201)Google Scholar
Ho, W. C. G. & Heinke, C. O. 2009, Nature, 462, 71Google Scholar
Ho, W. C. G. & Lai, D. 2001, MNRAS, 327, 1081CrossRefGoogle Scholar
Ho, W. C. G. & Mori, K. 2008, in: Bassa, C. G.et al. (eds.), AIP Conf. Proc. Vol. 983, 40 Years of Pulsars (Melville: American Inst. Phys.), p. 340Google Scholar
Ho, W. C. G., Potekhin, A. Y., & Chabrier, G. 2008, ApJS, 178, 102Google Scholar
Kaspi, V. M. 2010, Proc. National Academy Sci., 16, 7147Google Scholar
Lai, D. 2001, Rev. Mod. Phys., 73, 629Google Scholar
Manchester, R. N., Hobbs, G. B., Teoh, A., & Hobbs, M. 2005, AJ, 129, 1993Google Scholar
Muslimov, A. & Page, D. 1995, ApJ, 440, L77Google Scholar
Muslimov, A. & Page, D. 1996, ApJ, 458, 347Google Scholar
Pavlov, G. G. & Panov, A. N. 1976, Sov. Phys. JETP, 44, 300Google Scholar
Pavlov, G. G., Shibanov, Yu. A., & Yakovlev, D. G. 1980, Ap&SS, 73, 33Google Scholar
Pons, J. A., Viganò, D., & Geppert, U. 2012, A&A, 547, A9Google Scholar
Popov, S. B., et al. 2010, MNRAS, 401, 2675CrossRefGoogle Scholar
Potekhin, A. Y. 2010, A&A, 518, A24Google Scholar
Potekhin, A. Y. & Chabrier, G. 2003, ApJ, 585, 955CrossRefGoogle Scholar
Roger, R. S., et al. 1988, ApJ, 332, 940Google Scholar
Romani, R. W. 1990, Nature, 347, 741Google Scholar
Sanwal, D., Pavlov, G. G., Zavlin, V. E., & Teter, M. A. 2002, ApJ, 574, L61Google Scholar
Shabaltas, N. & Lai, D. 2012, ApJ, 748, 148Google Scholar
Spitkovsky, A. 2006, ApJ, 648, L51Google Scholar
Suleimanov, V. F., Pavlov, G. G., & Werner, K. 2010, ApJ, 714, 630Google Scholar
Suleimanov, V. F., Pavlov, G. G., & Werner, K. 2012, ApJ, 751, 15Google Scholar
Sun, M., Seward, F. D., Smith, R. K., & Slane, P. O. 2004, ApJ, 605, 742Google Scholar
Viganò, D. & Pons, J. A. 2012, MNRAS, 425, 2487Google Scholar
Zavlin, V. E. 2009, in: Becker, W. (ed.), Ap&SS Lib. Vol. 357, Neutron Stars and Pulsars (Berlin: Springer-Verlag), p. 181Google Scholar