Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T04:56:27.273Z Has data issue: false hasContentIssue false

The case for a close-in perturber to GJ 436 b

Published online by Cambridge University Press:  01 May 2008

Ignasi Ribas
Affiliation:
Institut de Ciències de l'Espai (CSIC-IEEC), Campus UAB, 08193 Bellaterra, Spain The HOLMES collaboration
Andreu Font-Ribera
Affiliation:
Institut de Ciències de l'Espai (CSIC-IEEC), Campus UAB, 08193 Bellaterra, Spain The HOLMES collaboration
Jean-Philippe Beaulieu
Affiliation:
Institut d'Astrophysique de Paris, CNRS (UMR 7095), Paris, France The HOLMES collaboration
Juan Carlos Morales
Affiliation:
Institut de Ciències de l'Espai (CSIC-IEEC), Campus UAB, 08193 Bellaterra, Spain
Enrique García-Melendo
Affiliation:
Esteve Duran Observatory Foundation, Montseny 46, 08553 Seva, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The increasing number of transiting planets raises the possibility of finding changes in their transit time, duration and depth that could be indicative of further planets in the system. Experience from eclipsing binaries indeed shows that such changes may be expected. A first obvious candidate to look for a perturbing planet is GJ 436, which hosts a hot transiting Neptune-mass planet in an eccentric orbit. Ribas et al. (2008) suggested that such eccentricity and a possible change in the orbital inclination might be due to a perturbing small planet in a close-in orbit. A radial velocity signal of a 5 M planet close to the 2:1 mean-motion resonance seemed to provide the perfect candidate. Recent new radial velocities have deemed such signal spurious. Here we put all the available information in context and we evaluate the possibility of a small perturber to GJ 436 b to explain its eccentricity and possible inclination change. In particular, we discuss the constraints provided by the transit time variation data. We conclude that, given the current data, the close-in perturber scenario still offers a plausible explanation to the observed orbital and physical properties of GJ 436 b.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Agol, E., Steffen, J., Sari, R., & Clarkson, W. 2005, MNRAS, 359, 567CrossRefGoogle Scholar
Alonso, R., Barbieri, M., Rabus, M., Deeg, H. J., Belmonte, J. A., & Almenara, J. M. 2008, A&A, submitted (arXiv:0804.3030)Google Scholar
Andersen, J. 1991, A&AR, 3, 91Google Scholar
Barnes, R. & Raymond, S. N. 2004, ApJ, 617, 569CrossRefGoogle Scholar
Bean, J. L. & Seifahrt, A. 2008, A&A, in press (arXiv:0806.3270)Google Scholar
Bean, J. L., et al. 2008, A&A, in press (arXiv:0806.0851)Google Scholar
Bonanos, A. Z. 2007, IAU Symposium, 240, 79Google Scholar
Butler, R. P., et al. 2004, ApJ, 617, 580CrossRefGoogle Scholar
Chambers, J. E. 1999, MNRAS, 304, 793CrossRefGoogle Scholar
Guilbault, P. R., Lloyd, C., & Paschke, A. 2001, IBVS, 5090, 1Google Scholar
Deming, D., et al. 2007, ApJ, 667, L199CrossRefGoogle Scholar
Demory, B.-O., et al. 2007, A&A, 475, 1125Google Scholar
Drechsel, H., Haas, S., Lorenz, R., & Mayer, P. 1994, A&A, 284, 853Google Scholar
Gillon, M., et al. 2007a, A&A, 472, L13Google Scholar
Gillon, M., et al. 2007b, A&A, 471, L51Google Scholar
Guinan, E. F. 1993, New Frontiers in Binary Star Research, 38, 1Google Scholar
Hilditch, R. W. 2001, An Introduction to Close Binary Stars, CUP, CambridgeCrossRefGoogle Scholar
Holman, M. J. & Murray, N. W. 2005, Science, 307, 1288CrossRefGoogle Scholar
Lacy, C. H. S., Helt, B. E., & Vaz, L. P. R. 1999, AJ, 117, 54Google Scholar
Laughlin, G., Butler, R. P., Fischer, D. A., Marcy, G. W., Vogt, S. S., & Wolf, A. S. 2005, ApJ, 622, 1182CrossRefGoogle Scholar
Maness, H. L., et al. 2007, PASP, 119, 90 (M07)CrossRefGoogle Scholar
Mardling, R. A. 2008, MNRAS, submitted (arXiv:0805.1928)Google Scholar
Mazeh, T. & Shaham, J. 1979, A&A, 77, 145Google Scholar
Miralda-Escudé, J. 2002, ApJ, 564, 1019CrossRefGoogle Scholar
Ribas, I. 2006, Astrophysics of Variable Stars, 349, 55Google Scholar
Ribas, I., Font-Ribera, A., & Beaulieu, J.-P. 2008, ApJ, 677, L59 (RFB08)CrossRefGoogle Scholar
Shporer, A., et al. 2008, ApJ, submitted (arXiv:0805.3915)Google Scholar
Schneider, J. 1994, P&SS, 42, 539Google Scholar
Söderhjelm, S. 1975, A&A, 42, 229Google Scholar
Torres, G. & Stefanik, R. P. 2000, AJ, 119, 1914CrossRefGoogle Scholar
Zakamska, N. L. & Tremaine, S. 2004, AJ, 128, 869CrossRefGoogle Scholar