Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T15:57:38.682Z Has data issue: false hasContentIssue false

The Carnegie Hubble Program: From parallaxes to the Tully–Fisher relation

Published online by Cambridge University Press:  26 February 2013

V. Scowcroft
Affiliation:
Observatories of the Carnegie Institute of Washington, 813 Santa Barbara Street, Pasadena, CA 91101, USA email: [email protected]
W. L. Freedman
Affiliation:
Observatories of the Carnegie Institute of Washington, 813 Santa Barbara Street, Pasadena, CA 91101, USA email: [email protected]
B. F. Madore
Affiliation:
Observatories of the Carnegie Institute of Washington, 813 Santa Barbara Street, Pasadena, CA 91101, USA email: [email protected]
A. Monson
Affiliation:
Observatories of the Carnegie Institute of Washington, 813 Santa Barbara Street, Pasadena, CA 91101, USA email: [email protected]
S. E. Persson
Affiliation:
Observatories of the Carnegie Institute of Washington, 813 Santa Barbara Street, Pasadena, CA 91101, USA email: [email protected]
M. Seibert
Affiliation:
Observatories of the Carnegie Institute of Washington, 813 Santa Barbara Street, Pasadena, CA 91101, USA email: [email protected]
C. Burns
Affiliation:
Observatories of the Carnegie Institute of Washington, 813 Santa Barbara Street, Pasadena, CA 91101, USA email: [email protected]
J. R. Rigby
Affiliation:
Observational Cosmology Lab, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Carnegie Hubble Program (CHP) is a Warm Spitzer program with the aim of reducing the uncertainty in the Hubble constant to below 3%. The program is calibrated using Galactic Cepheids with precise parallax distances from the Hubble Space Telescope (HST), combined with a large sample of Cepheids in the Large Magellanic Cloud. We extend the Cepheid distance scale to the Local Group and beyond, into the regime probed by the Tully–Fisher relation. The entire program—from Galactic Cepheids to the most distant galaxies—uses the Spitzer/IRAC instrument. Completing the entire program with a single instrument on a single telescope virtually eliminates instrumental effects, whilst moving to the mid-infrared drastically reduces the reddening and metallicity effects that trouble the optical Cepheid distance scale. Our first measurement of the Hubble constant, using only two CHP galaxies tied into the HST Key Project results has produced a measurement of H0 = 74.3 ± 2.1 (systematic) km s−1 Mpc−1, which corresponds to a systematic uncertainty of 2.8%.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Benedict, G. F., McArthur, B. E., Feast, M. W., et al. 2007, AJ, 133, 1810CrossRefGoogle Scholar
Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245Google Scholar
Freedman, W. L. 1988, ApJ, 326, 691CrossRefGoogle Scholar
Freedman, W. L., Madore, B. F., Gibson, B. K., et al. 2001, ApJ, 553, 47Google Scholar
Freedman, W. L., Madore, B. F., Scowcroft, V., et al. 2011, AJ, 142, 192CrossRefGoogle Scholar
Freedman, W. L., Madore, B. F., Scowcroft, V., Burns, C., Monson, A., Persson, S. E., Seibert, M., & Rigby, J. R. 2012, ApJ, 758, 24Google Scholar
Hu, W. 2005, in: Observing Dark Energy (Wolff, S.C., & Lauer, T.R., eds.), Astron. Soc. Pac. Conf. Ser., 339, p. 215Google Scholar
Indebetouw, R., Mathis, J. S., & Babler, B. L., et al. 2005, ApJ, 619, 931CrossRefGoogle Scholar
Marengo, M., Evans, N. R., Barmby, P., Bono, G., Welch, D. L., & Romaniello, M. 2010, ApJ, 709, 120Google Scholar
Melbourne, J., Williams, B., Dalcanton, J., Girardi, L., & Marigo, P. 2011, in: Why Galaxies Care about AGB Stars II: Shining Examples and Common Inhabitants (Kerschbaum, F., Lebzelter, T., & Wing, R.F., eds.), San Francisco: Astron. Soc. Pac., p. 515Google Scholar
Monson, A. J., Freedman, W. L., Madore, B. F., Persson, S. E., Scowcroft, V., Seibert, M., & Rigby, J. R. 2012, ApJ, 759, 146Google Scholar
Persson, S. E., Murphy, D., Smee, S., et al. 2012, PASP, submittedGoogle Scholar
Riess, A. G., Macri, L., Casertano, S.et al. 2011, ApJ, 730, 119Google Scholar
Scowcroft, V., Freedman, W. L., Madore, B. F., Monson, A. J., Persson, S. E., Seibert, M., Rigby, J. R., & Sturch, L. 2011, ApJ, 743, 76Google Scholar
Sorce, J. G., Courtois, H. M., & Tully, R. B. 2012a, AJ, 144, 133CrossRefGoogle Scholar
Sorce, J. G., Courtois, H. M., Tully, R. B., et al. 2012b, ApJ, submittedGoogle Scholar
Suyu, S. H., Treu, T., Blandford, R. D., et al. 2012, in: KIPAC workshop on the Hubble constant (arXiv:1202.4459)Google Scholar
Udalski, A., Wyrzykowski, L., Pietrzynski, G., Szewczyk, O., Szymanski, M., Kubiak, M., Soszynski, I., & Zebrun, K. 2001, Acta Astron., 51, 221Google Scholar
Walker, A. 2012, Ap&SS, 341, 43Google Scholar
Zaritsky, D., Zabludoff, A. I., & Gonzales, A. H. 2012, ApJ, 748, 15Google Scholar