Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T02:16:08.274Z Has data issue: false hasContentIssue false

Carbon Interstellar Chemistry: Theory versus Observations

Published online by Cambridge University Press:  21 February 2014

V. Wakelam*
Affiliation:
Univ. Bordeaux, LAB, UMR 5804, F-33270, Floirac, France CNRS, LAB, UMR 5804, F-33270, Floirac, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

To study the interstellar chemical composition and interpret molecular observations, astrochemists have built chemical models over the years. Those models compute the composition of the gas and the icy mantles of interstellar grains taking in account a large number of processes, such as chemical reactions in the gas-phase, interactions with grain surfaces (sticking and evaporation) and chemical reactions at the surface of the grains. Those models rely on a number of parameters (physical parameters of the medium and intrinsic chemical parameters such as rate coefficients), which are estimated with an associated uncertainty. From a chemical point of view, those uncertainties are mainly due to an incomplete knowledge of the efficiency of the processes in the interstellar conditions. Many studies in the recent and past years have been undertaken to improve this knowledge, either using experimental or theoretical results in physico-chemistry.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Garrod, R. T., Wakelam, V., & Herbst, E. 2007, A&A, 467, 1103Google Scholar
Graedel, T. E., Langer, W. D., & Frerking, M. A. 1982, ApJS, 48, 321CrossRefGoogle Scholar
Hasegawa, , et al. 1992, ApJS, 82, 167CrossRefGoogle Scholar
Hily-Blant, , et al. 2010, A&A 513 id.A41Google Scholar
Hincelin, et al. 2011, A&A 530 id.A61Google Scholar
Jenkins, E. B., 2009, ApJ, 700, 1299CrossRefGoogle Scholar
Léger, A. & Omont, A. 1985, A&A, 146, 81Google Scholar
Prasad, S. S. & Tarafdar, S. P. 1983, ApJ, 267, 603Google Scholar
Schilke, P., Phillips, T. G., & Wang, N. 1995, ApJ, 441, 334CrossRefGoogle Scholar
Snow, T. P. & McCall, B. J. 2006, ARAA, 44, 367Google Scholar
Whittet, D. C. B. 2010, ApJ, 710, 1009CrossRefGoogle Scholar
Wakelam, , et al. 2004, A&A, 413, 609Google Scholar
Wakelam, et al. 2005, A&A, 444, 883Google Scholar
Wakelam, , et al. 2006, A&A, 451, 551Google Scholar
Wakelam, V. & Herbst, E. 2008, ApJ, 680, 371Google Scholar
Wakelam, , et al. 2010, Space Science Reviews, 156, 13Google Scholar
Wakelam, , et al. 2010, A&A 517 id.A21Google Scholar
Wakelam, V., Cuppen, H. M., & Herbst, E. 2012, in Smith, I. W. M., Cockell, C. S. & Leach, S. (eds.), Astrochemistry and Astrobiology (Springer), p. 115Google Scholar
Ziurys, L. M., Friberg, P., & Irvine, W. M. 1989, ApJ, 341, 857Google Scholar