Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T21:25:33.467Z Has data issue: false hasContentIssue false

Capabilities of next generation telescopes for cosmic magnetism

Published online by Cambridge University Press:  03 March 2020

Jeroen M. Stil*
Affiliation:
Department of Physics and Astronomy, The University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The next generation of radio telescopes offer significant improvement in bandwidth and survey speed. We examine the ability to resolve Faraday thick objects in Faraday space as a function of survey parameters. The necessary combination of λmax and λmin to resolve objects with modest Faraday thick components requires one or two surveys with instantaneous bandwidth 300 MHz to 750 MHz offered by next generation telescopes. For spiral galaxies, bandwidths in excess of 1.5 GHz are required. Correction for Galactic Faraday rotation must account for common gradients of order 10 rad m−2 per degree. How effective a new rotation measure grid is in probing the foreground depends on off-axis polarization calibration.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

Footnotes

Present address: Department of Physics and Astronomy, The University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.

References

Beck, R. and Gaensler, B. M., 2004, New Astronomy Reviews, 48, 1289 CrossRefGoogle Scholar
Brentjens, M. A., & De Bruyn, A. G. 2005, A&A, 441, 1217 Google Scholar
Giessübel, R., Heald, G., Beck, R. & Arshakian, T. G. 2013, A&A, 559, A27 Google Scholar
Gaensler, B., Landecker, T. L., & Taylor, A. R. 2010, BAAS, 42, 515 Google Scholar
Hammond, A., Robishaw, T., & Gaensler, B. M. 2012, arXiv:1209.1438Google Scholar
Jagannathan, P., Bhatnagar, S., Rau, U., & Taylor, A.R. 2017, AJ, 154, 56 Google Scholar
Johnston-Hollitt, M., Govoni, F., Beck, R., Dehghan, S., et al.., 2015, PoS (AASKA14) 092Google Scholar
Kumazaki, K., Akahori, T., Ideguchi, S., Kurayama, T., & Takahashi, K., 2014, PASJ, 66, 61 CrossRefGoogle Scholar
Oppermann, N. Junklewitz, H., Robbers , G., et al. 2012, A&A, 542, A93 Google Scholar
Oppermann, N., Junklewitz, H., Greiner, M., et al. 2015, A&A, 575, A118 Google Scholar
Rudnick, L. & Owen, F. 2014, ApJ, 785, 45 CrossRefGoogle Scholar
Sun, X., Rudnick, L., Akahori, T., Anderson, C. S., Bell, M. R., et al. 2015, AJ, 149, 60 CrossRefGoogle Scholar
Taylor, A. R. & Salter, C. J. 2010, ASP Conf. Ser. 438, 402 Google Scholar