Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T16:09:12.851Z Has data issue: false hasContentIssue false

Can we infer the past activity of M31⋆ as we do for Sgr A⋆?

Published online by Cambridge University Press:  09 February 2017

Maïca Clavel
Affiliation:
Space Science Laboratory, University of California, Berkeley, CA 94720-7450, USA email: [email protected]
Régis Terrier
Affiliation:
APC, Univ. Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs. de Paris, USPC, France
Andrea Goldwurm
Affiliation:
APC, Univ. Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs. de Paris, USPC, France Service d’Astrophysique, IRFU, CEA Saclay, 91191 Gif-sur-Yvette, France
Mark R. Morris
Affiliation:
Dept. of Physics & Astronomy, University of California, Los Angeles, CA 90095-1547, USA
Gabriele Ponti
Affiliation:
Max-Planck-Institut für Extraterrestrische Physik, 85741 Garching, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The history of supermassive black holes’ activity can be partly constrained by monitoring the diffuse X-ray emission possibly created by the echoes of past events propagating through the molecular clouds of their respective environments. In particular, using this method we have demonstrated that our Galaxy’s supermassive black hole, Sgr A⋆, has experienced multiple periods of higher activity in the last centuries, likely due to several short but very energetic events, and we now investigate the possibility of studying the past activity of other supermassive black holes by applying the same method to M31⋆. We set strong constraints on putative phase transitions of this more distant galactic nucleus but the existence of short events such as the ones observed in the Galactic center cannot be assessed with the upper limits we derived.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Capelli, R., Warwick, R. S., & Porquet, D., et al. 2012, A&A, 545, A35 Google Scholar
Chuard, D., Terrier, R., & Goldwurm, A., et al. 2016, this same volume Google Scholar
Clavel, M., Terrier, R., & Goldwurm, A., et al. 2013, A&A, 558, A32 Google Scholar
Clavel, M., Soldi, S., & Terrier, R., et al. 2014, MNRAS, 443, L129 CrossRefGoogle Scholar
Cramphorn, C. K. & Sunyaev, R. A. 2002, A&A, 389, 252 Google Scholar
Keel, W. C., Maksym, W. P., & Bennert, V. N., et al. 2015, AJ, 149, 155 CrossRefGoogle Scholar
Koyama, K., Maeda, Y., & Sonobe, T., et al. 1996, PASJ, 48, 249 CrossRefGoogle Scholar
Li, Z., Garcia, M. R., & Forman, W. R. 2011, ApJ, 728, L10 Google Scholar
Li, Z., Morris, M. R., & Baganoff, F. K. 2013, ApJ, 779, 154 Google Scholar
Melchior, A. L. & Combes, F. 2011, A&A, 536, 52 Google Scholar
Mori, K., Hailey, C. J., & Krivonos, R., et al. 2015, ApJ, 814, 94 Google Scholar
Neilsen, J., Markoff, S., & Nowak, M. A., et al. 2015, ApJ, 799, 199 CrossRefGoogle Scholar
Nieten, C., Neininger, N., & Guélin, M., et al. 2006, A&A, 453, 459 Google Scholar
Ponti, G., Terrier, R., & Goldwurm, A., et al. 2010, ApJ, 714, 732 CrossRefGoogle Scholar
Ponti, G., Morris, M. R., & Clavel, M., et al. 2014, IAUS, 303, 333 Google Scholar
Rees, M. J. 1988, Nature, 333, 523 CrossRefGoogle Scholar
Ryu, S. G., Nobukawa, M., & Nakashima, S., et al. 2013, PASJ, 65, 33 CrossRefGoogle Scholar
Sunyaev, R. A., Markevitch, M., & Pavlinsky, M. 1993, ApJ, 407, 606 Google Scholar
Terrier, R., Ponti, G., & Bélanger, G., et al. 2010, ApJ, 719, 143 Google Scholar
Walls, M., Chernyakova, M., & Terrier, R., et al. 2016, MNRAS, in press (arXiv:1609.00175)Google Scholar
Zhang, S., Hailey, C. J., & Mori, K., et al. 2015, ApJ, 815, 132 CrossRefGoogle Scholar