Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-18T13:44:38.326Z Has data issue: false hasContentIssue false

Black holes formed by direct collapse: observational evidences

Published online by Cambridge University Press:  23 June 2017

I. F. Mirabel*
Affiliation:
Institute of Astronomy and Space Physics. CONICET - Universidad de Buenos Aires, Ciudad Universitaria, Av. Cantilo S/N, 1428 Buenos Aires - Argentina email: [email protected] Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu-CNRS, CEA-Saclay, pt courrier 131, 91191 Gif-sur-Yvette, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Binary black holes as the recently detected sources of gravitational waves can be formed from massive stellar binaries in the field or by dynamical interactions in clusters of high stellar density, if the black holes are the remnants of massive stars that collapsed without natal kicks that would disrupt the binary system or eject the black holes from the cluster before binary black hole formation. Here are summarized and discussed the kinematics in three dimensions of space of five Galactic black hole X-ray binaries. For Cygnus X-1 and GRS 1915+105 it is found that the black holes of ~15 M and ~10 M in these sources were formed in situ, without energetic kicks. These observations suggest that binary black holes with components of ~10 M may have been prolifically produced in the universe.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Abbott, B. P., et al. 2016a, PRL, 116, 061102 Google Scholar
Abbott, B. P., et al. 2016b, PRL, 116, 241103 Google Scholar
Belczynski, K, Holz, D. E., Bulik, T., et al. 2016, Nature, 534, 512 Google Scholar
Dominik, M. & Belczynski, K, Fryer, C. et al. 2012, ApJ, 759, 52 CrossRefGoogle Scholar
Fryer, C. L., Belczynski, K., Wiktorowicz, G., et al. 2012, ApJ, 749, 91 Google Scholar
Miller-Jones, J. C. A., Jonker, P. G., Dhawan, V., et al. 2009a, ApJ, 706, L230 CrossRefGoogle Scholar
Miller-Jones, J. C. A., Jonker, P. G., Nelemans, G., et al. 2009b, MNRAS, 394, 1440 Google Scholar
Mirabel, I. F. 2017, New Frontiers in Black Hole Astrophysics. Proceedings IAU Symposium 324. Andreja Gomboc, & Carole Mundell, eds. Google Scholar
Mirabel, I. F., Dhawan, V., Mignani, R. P., et al. et al. 2001, Nature, 413, 139 Google Scholar
Mirabel, I. F., Mignani, R., Rodrigues, I., et al. 2002, A&A, 395, 595 Google Scholar
Mirabel, I. F. & Rodrigues, I. 2003, Science, 300, 1119 Google Scholar
Nelemans, G., Tauris, T. M., & van den Heuvel, E. P. J. 1999, A&A, 352, L87 Google Scholar
Reid, M. J., McClintock, J. E., Narayan, R. et al. 2011, ApJ, 742, 83 Google Scholar
Reid, M. J., McClintock, J. E., Steiner, J. F. et al. 2014, ApJ, 796, 2 CrossRefGoogle Scholar
Rodriguez, C. L., Haster, C-J, Chatterjee, S., et al. 2016, ApJL, 824, L8 Google Scholar
Sukhbold, T., Ertl, T., Woosley, S. E., et al. 2016, ApJ, 821, 38 Google Scholar