Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T08:48:31.408Z Has data issue: false hasContentIssue false

Black Hole Motion as Catalyst of Orbital Resonances

Published online by Cambridge University Press:  01 September 2007

C. M. Boily
Affiliation:
Observatoire astronomique & CNRS UMR 7550, Université de Strasbourg I, F-67000 Strasbourg email: [email protected]
T. Padmanabhan
Affiliation:
I.U.C.A.A., Ganeshkhind Post Bag 4, Pune, India email: [email protected]
A. Paiement
Affiliation:
E.N.S.P. de Strasbourg, Parc d'innovation, Bd. Sébastien Brant, F-67412Ilkirch
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The motion of a black hole about the centre of gravity of its host galaxy induces a strong response from the surrounding stellar population. We consider the case of a harmonic potential and show that half of the stars on circular orbits in that potential shift to an orbit of lower energy, while the other half receive a positive boost. The black hole itself remains on an orbit of fixed amplitude and merely acts as a catalyst for the evolution of the stellar energy distribution function f(E). We then consider orbits in the logarithmic potential and identify the response of stars near resonant energies. The kinematic signature of black hole motion imprints the stellar line-of-sight mean velocity to a magnitude ≃ 13% the local root mean-square velocity dispersion σ. The high velocity dispersion at the 5:2 resonance hints to an observable effect at a distance ≃ 3 times the hole's influence radius.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Backer, D. C. & Sramek, R. A. 1999, ApJ, 524, 805CrossRefGoogle Scholar
Bahcall, J. N. & Wolf, R. A 1977, ApJ, 216, 883CrossRefGoogle Scholar
Binney, J. J. & Tremaine, S. D. 1987, Galactic Dynamics, Princeton: University PressGoogle Scholar
Boily, C. M., Padmanabhan, T., & Paiement, A. 2007, MNRAS, astro-ph:0705.2756v2Google Scholar
Freitag, M., Amaro-Seoane, P., & Kalogera, V. 2006, ApJ, 649, 91CrossRefGoogle Scholar
Genzel, R., Thatte, N., Krabbe, A., et al. 1996, ApJ, 472, 153CrossRefGoogle Scholar
Genzel, R., Eckart, A., Ott, T., et al. 1997, MNRAS, 291, 219CrossRefGoogle Scholar
Genzel, R., Schödel, R., Ott, T., et al. 2003, ApJ, 594, 812CrossRefGoogle Scholar
Ghez, A. M., Salim, S., Hornstein, S. D., et al. 2005, ApJ, 620, 744Google Scholar
Merritt, D. 2001, ApJ, 556, 245CrossRefGoogle Scholar
Merritt, D. 2005, ApJ 628, 673CrossRefGoogle Scholar
Merritt, D. 2006, RPPh, 69, 2513Google Scholar
Merritt, D., Berczik, P., & Laun, F. 2007, AJ, 133, 553CrossRefGoogle Scholar
O'Leary, R. M. & Loeb, A. 2006, submitted to MNRAS, astro-ph/0609046Google Scholar
Preto, M., Merritt, D., & Spurzem, R. 2004, ApJ, 613, L109CrossRefGoogle Scholar
Reid, M. J. & Brunthaler, A. 2004, ApJ 616, 872CrossRefGoogle Scholar
Reid, M. J., Menten, K. M., Trippe, S., et al. 2007, ApJ, 659, 378CrossRefGoogle Scholar
Schödel, R., Eckart, A., Alexander, T., et al. 2007, astro-ph/0703178Google Scholar
Yu, Q. & Tremaine, S. D. 2003, ApJ, 599, 1129CrossRefGoogle Scholar