Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-20T17:37:46.380Z Has data issue: false hasContentIssue false

Black hole high mass X-ray binary microquasars at cosmic dawn

Published online by Cambridge University Press:  30 December 2019

I. F. Mirabel*
Affiliation:
Institute of Astronomy and Space Physics. CONICET - Universidad de Buenos Aires, Ciudad Universitaria, Av. Cantilo S/N, 1428 Buenos Aires - Argentina Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu/DAPâ^’CNRS, CEA-Saclay, pt courrier 131, 91191 Gif-sur-Yvette, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Theoretical models and observations suggest that primordial Stellar Black Holes (Pop-III-BHs) were prolifically formed in HMXBs, which are powerful relativistic jet sources of synchrotron radiation called Microquasars (MQs).

Large populations of BH-HMXB-MQs at cosmic dawn produce a smooth synchrotron cosmic radio background (CRB) that could account for the excess amplitude of atomic hydrogen absorption at z∼17, recently reported by EDGES.

BH-HMXB-MQs at cosmic dawn precede supernovae, neutron stars and dust. BH-HMXB-MQs promptly inject into the IGM hard X-rays and relativistic jets, which overtake the slowly expanding HII regions ionized by progenitor Pop-III stars, heating and partially ionizing the IGM over larger distance scales.

BH-HMXBs are channels for the formation of Binary-Black-Holes (BBHs). The large masses of BBHs detected by gravitational waves, relative to the masses of BHs detected by X-rays, and the high rates of BBH-mergers, are consistent with high formation rates of BH-HMXBs and BBHs in the early universe.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Abbott, B. P. et al. 2016, PRL, 116, 061102 10.1103/PhysRevLett.116.061102CrossRefGoogle Scholar
Barkana 2018, Nature 555, 7174 CrossRefGoogle Scholar
Basu-Zych, A. R., Lehmer, B. D., Hornschemeier, A. E., et al. 2013, ApJ, 774, 152B CrossRefGoogle Scholar
Belczynski, K., Dominik, M., Bulik, T., et al. 2010, ApJ, 715, L138 10.1088/2041-8205/715/2/L138CrossRefGoogle Scholar
Belczynski, K., Holz, D. E., Bulik, T., et al. 2016, Nature, 534, 512 10.1038/nature18322CrossRefGoogle Scholar
Biermann, P. L., Biman, B. N., Caramete, L. I., et al. 2014, MNRAS, 441, 1147 10.1093/mnras/stu541CrossRefGoogle Scholar
Bowman, J. D., Rogers, A. E E., Monsalve, R. A. et al. 2018a, Nature, 555, 67 10.1038/nature25792CrossRefGoogle Scholar
Bowman, J. D., Rogers, A. E E., Monsalve, R. A. et al. 2018b, Nature, 564, E35 10.1038/s41586-018-0797-4CrossRefGoogle Scholar
Bridle, A. H. 1967, MNRAS 136, 219 Google Scholar
Brorby, M., Kaaret, P., Prestwich, A., et al. 2016, MNRAS, 457, 21 10.1093/mnras/stw284CrossRefGoogle Scholar
Brown, G. E. & Bethe, H. A. 1994, ApJ, 423, 659 CrossRefGoogle Scholar
Cohen, A., Fialkov, A., Barkana, R. et al. 2017, MNRAS 472, 1915 10.1093/mnras/stx2065CrossRefGoogle Scholar
Condon, J., Cotton, W., Fomalont, E., et al. 2012, ApJ 758, 23 CrossRefGoogle Scholar
Cusumano, G, Mangano, V., Chincarini, G. et al. 2006, Nature 440, 9 CrossRefGoogle Scholar
de Mink, S. E. & Mandel, L. 2016, MNRAS, 460, 3545 10.1093/mnras/stw1219CrossRefGoogle Scholar
Dominik, M., Belczynski, K, Fryer, C. et al. 2012, ApJ, 759, 52 10.1088/0004-637X/759/1/52CrossRefGoogle Scholar
Douna, V. M., Pellizza, L. J., Mirabel, I. F. et al. 2015, A&A 579, A44 Google Scholar
Douna, V. M., Pellizza, L., Laurent, Ph. et al. 2018, MNRAS 474, 3488 10.1093/mnras/stx2983CrossRefGoogle Scholar
Dowell, J. & Taylor, G. B. 2018, ApJL, 858, L9 10.3847/2041-8213/aabf86CrossRefGoogle Scholar
Ewall-Wice, A., Chang, T.-C, Lazio, J. et al. 2018, ApJ 868, 63 10.3847/1538-4357/aae51dCrossRefGoogle Scholar
Fabrika, S. 2004, ASPRv, 12, 1152 Google Scholar
Feng, C. & Holder, G. 2018 ApJL, 858, L17 CrossRefGoogle Scholar
Feng, H. & Soria, R. 2011, New Astron. Revs. 55, 166183 10.1016/j.newar.2011.08.002CrossRefGoogle Scholar
Fermi, LAT Collaboration 2009, Science, 326, 1512 Google Scholar
Fialkov, A., Barkana, R., & Visbal, E. 2014, Nature 506, 197 10.1038/nature12999CrossRefGoogle Scholar
Fixsen, D. J., Kogut, A., Levin, S. et al. 2011, ApJ, 734, 5 10.1088/0004-637X/734/1/5CrossRefGoogle Scholar
Fragos, T., Lehmer, B. D., Naoz, S. et al. 2013, ApJ, 776, L31 10.1088/2041-8205/776/2/L31CrossRefGoogle Scholar
Fryer, C. L., Belczynski, K., Wiktorowicz, G. et al. 2012, ApJ, 749, 91 10.1088/0004-637X/749/1/91CrossRefGoogle Scholar
Furlanetto, S. R. 2006, MNRAS 371, 867 CrossRefGoogle Scholar
Furlanetto, S. R., Zaldarriaga, M., Hernquist, L. 2004, ApJ 613, 16 10.1086/423028CrossRefGoogle Scholar
Gallo, E., Fender, R., Kaiser, Ch. et al. 2005, Nature, 436, 819821 10.1038/nature03879CrossRefGoogle Scholar
Gandhi, P., Rao, A., Johnson, M. A. C. et al. 2018, MNRAS, in press Google Scholar
García, F., Mirabel, I. F., Chaty, S. 2019, In preparationGoogle Scholar
Garratt-Smithson et al. 2018, MNRAS, 480, 2985 10.1093/mnras/sty1998CrossRefGoogle Scholar
Haiman, Z. 2011, Nature, 472, 47 10.1038/472047aCrossRefGoogle Scholar
Collaboration, HAWC 2018, arXiv:1812.05682Google Scholar
Heger, A., Fryer, C. L., Woosley, S. E. et al. 2003, ApJ, 591, 288 10.1086/375341CrossRefGoogle Scholar
Heinz, S. & Sunyaev, 2002, A&A, 390, 751 Google Scholar
Hills, R., Kulkarni, G., Meerburg, D. et al. 2018, Nature, 564, E32E34 10.1038/s41586-018-0796-5CrossRefGoogle Scholar
Inayoshi, K., Kashiyama, K., Visbal, E., Haiman, Z. 2016, MNRAS, 461, 2722 10.1093/mnras/stw1431CrossRefGoogle Scholar
Inayoshi et al. 2017, MNRAS, 468, 2020 Google Scholar
Ivison et al. 2010, MNRAS, 402, 245 10.1111/j.1365-2966.2009.15918.xCrossRefGoogle Scholar
Kaaret, P. 2014, MNRAS, 440, L26 10.1093/mnrasl/slu018CrossRefGoogle Scholar
Lehmer, B. D., Basu-Zych, A. R., Mineo, S. et al. 2016, ApJ 825, 7L 10.3847/0004-637X/825/1/7CrossRefGoogle Scholar
Loeb, A. 2010, Princeton University Press, 2010. ISBN: 978-1-4008-3406-8 Google Scholar
Madau, P., Meiksin, A., & Rees, M. J. 2004, ApJ, 475, 429 10.1086/303549CrossRefGoogle Scholar
Madau, P., Rees, M. J., Volonteri, M. et al. 2004, ApJ, 604, 484 10.1086/381935CrossRefGoogle Scholar
Magnelli, B. et al. 2015, A&A, 573, 45 Google Scholar
Marchant, P., Langer, N., Podsiadlowski, Ph. et al. 2016, A&A, 588, A50 Google Scholar
Mel’nik, A. M. & Dambis, A. K. 2009, MNRAS, 400, 518 10.1111/j.1365-2966.2009.15484.xCrossRefGoogle Scholar
Middleton, M. J. et al. 2018, arXiv:1810.10518Google Scholar
Miller-Jones, J. C. A., Jonker, P. G., Dhawan, V. et al. 2009a, ApJ, 706, L230 10.1088/0004-637X/706/2/L230CrossRefGoogle Scholar
Miller-Jones, J. C. A., Jonker, P. G., Nelemans, G. et al. 2009b, MNRAS, 394, 1440 10.1111/j.1365-2966.2009.14404.xCrossRefGoogle Scholar
Mirabel, I. F. & Rodr guez, L. F. 1994, Nature, 371, 46 10.1038/371046a0CrossRefGoogle Scholar
Mirabel, I. F. & Rodr guez, L. F. 1998, Nature, 392, 673677 10.1038/33603CrossRefGoogle Scholar
Mirabel, I. F. & Rodr guez, L. F. 1999, ARAA, 37, 409443 10.1146/annurev.astro.37.1.409CrossRefGoogle Scholar
Mirabel, I. F., Dhawan, V., Mignani, R. P. et al. 2001, Nature, 413, 139 10.1038/35093060CrossRefGoogle Scholar
Mirabel, I. F., Mignani, R., Rodrigues, I. et al. 2002, A&A, 395, 595 Google Scholar
Mirabel, I. F. & Rodrigues, I. 2003, Science, 300, 1119 CrossRefGoogle Scholar
Mirabel, I. F. 2006, Science, 312, 1759 10.1126/science.1129815CrossRefGoogle Scholar
Mirabel, I. F. 2011, Proc. IAU Symp 275. Jets at all Scales. Cambridge University Press, pages 2-8. ed. Romero, G. E., Sunyaev, R. A., Belloni, T., 275, 2-8Google Scholar
Mirabel, I. F., Dijkstra, M., Laurent, Ph ., et al. 2011, A&A, 528, A149 Google Scholar
Mirabel, I. F. 2012, Science, 335, 175 10.1126/science.1215895CrossRefGoogle Scholar
Mirabel, I. F. 2017, New Astron. Revs. 78, 1 CrossRefGoogle Scholar
Mirocha, J., Harker, G. J. A., & Burns, J. O. 2013, ApJ, 777, 118 10.1088/0004-637X/777/2/118CrossRefGoogle Scholar
Mirocha, J. Mebane, Furlanetto, R. H., S. R. et al. 2018, MNRAS, 478, 5591 10.1093/mnras/sty1388CrossRefGoogle Scholar
Pakull, M. W., Soria, R., Motch, C. 2010, Nature, 466, 209 10.1038/nature09168CrossRefGoogle Scholar
Reid, M. J., McClintock, J. E., Narayan, R. et al. 2011, ApJ, 742, 83 10.1088/0004-637X/742/2/83CrossRefGoogle Scholar
Reid, M. J., McClintock, J. E., Steiner, J. F. et al. 2014, ApJ, 796, 2 10.1088/0004-637X/796/1/2CrossRefGoogle Scholar
Rodriguez, C. L., Haster, C-J, Chatterjee, S. et al. 2016, ApJL, 824, L8 10.3847/2041-8205/824/1/L8CrossRefGoogle Scholar
Sana, H., de Mink, S. E., de Koter, A. et al. 2012, Science, 337, 444 10.1126/science.1223344CrossRefGoogle Scholar
Sana, H., Le Bouquin, J.-L., Lacour, S. et al. 2014, ApJS, 215, 15 10.1088/0067-0049/215/1/15CrossRefGoogle Scholar
Sana, H., Ramirez-Tannus, M. C., de Koter, A. et al. 2017, ApJS, 215, 15 10.1088/0067-0049/215/1/15CrossRefGoogle Scholar
Sanders, D. B. & Mirabel, I. F. 1996, ARAA, 34, 749789 CrossRefGoogle Scholar
Seiffert et al. 2011, A&A, 599, L9 Google Scholar
Shakura, N. I., & Sunyaev, R. A. 1973 A&A, 24, 337 Google Scholar
Singal, J. et al. 2018, PASP, 130, 036001 10.1088/1538-3873/aaa6b0CrossRefGoogle Scholar
Sotomayor, C. P. & Romero, G. E. 2018, A&A, in pressGoogle Scholar
Stacy, A., Bromm, V., Lee, A. T. 2016, MNRAS, 462, 1307 10.1093/mnras/stw1728CrossRefGoogle Scholar
Subrahmanyan, R. & Cowsik, R. 2013, ApJ, 776, 42 CrossRefGoogle Scholar
Sukhbold, T., Ertl, T. Woosley, S. E. et al. 2016, ApJ, 821, 38 CrossRefGoogle Scholar
Tavani, M. etal 2009, Nature 462, 620 10.1038/nature08578CrossRefGoogle Scholar
Timmes, F. X., Woosley, S. E., Weaver, T. A. 1996, ApJ 457, 834 10.1086/176778CrossRefGoogle Scholar
Tueros, M., del Valle, M. V., Romero, G. E. 2014, A&A, 570, L3 Google Scholar
Verstrom, T., Norris, R. P., Scott, D. et al. 2015, MNRAS, 447, 2243 CrossRefGoogle Scholar
Watkinson, C. A. et al. 2019, MNRAS, 482, 2653 CrossRefGoogle Scholar
Ysard, N. & Lagache, G. 2012, A&A, 547, A53 Google Scholar
Zanin, R. et al. 2016, A&A, 596, A55 Google Scholar